Please wait a minute...
金属学报  2013, Vol. 49 Issue (2): 214-220    DOI: 10.3724/SP.J.1037.2012.00446
  论文 本期目录 | 过刊浏览 |
泡沫NiCrAl电热合金的制备及其电学性能
张月来,段德莉,赵宇航,侯思焓,李曙
中国科学院金属研究所, 沈阳 110016
SYNTHESIS AND ELECTRICAL PROPERTIES OF NiCrAl ELECTRO-THERMAL ALLOY FOAMS
ZHANG Yuelai, DUAN Deli, ZHAO Yuhang, HOU Sihan, LI Shu
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张月来,段德莉,赵宇航,侯思焓,李曙. 泡沫NiCrAl电热合金的制备及其电学性能[J]. 金属学报, 2013, 49(2): 214-220.
ZHANG Yuelai, DUAN Deli, ZHAO Yuhang, HOU Sihan, LI Shu. SYNTHESIS AND ELECTRICAL PROPERTIES OF NiCrAl ELECTRO-THERMAL ALLOY FOAMS[J]. Acta Metall Sin, 2013, 49(2): 214-220.

全文: PDF(2748 KB)  
摘要: 

通过粉末包埋渗法并经过真空均匀化热处理制备高比表面积的泡沫NiCrAl电热合金, 考察了真空均匀化热处理温度对泡沫NiCrAl电热合金中金属元素蒸发的影响, 采用SEM和XRD等分析手段, 研究了泡沫NiCrAl的成分、结构及其与电阻率的关系. 研究结果表明, 以泡沫NiCr为基材通过调整渗Al温度及适当的真空均匀化热处理, 能获得成分均匀、具有高表观电阻率的泡沫NiCr(20-30)Al(3-9)电热合金. 泡沫NiCr渗Al后形成Ni固溶体, Cr, Ni2Al3, NiAl和Ni3Al的多相结构, 随着Al含量的增加电阻率降低. 经过真空均匀化热处理后, 当Al含量很低时, Al固溶在Ni固溶体中, 电阻率比泡沫NiCr高且随Al含量增加而上升; 当Al质量分数达到约5%时, 表观电阻率达最大值; 当Al含量更高时, 除Ni固溶体外还有Ni3Al相生成, 电阻率又开始降低; Al和Cr含量均较高时, 未溶解的Cr沉淀相会显著降低泡沫NiCrAl的电阻率, 故泡沫NiCr30Al9不适宜用作电热合金.

关键词 粉末包埋渗Al泡沫NiCrAl真空均匀化热处理金属蒸发表观电阻率    
Abstract

NiCrAl alloy is a kind of electro--thermal material with high temperature performance and metal foams have high specific surface area and high porosity. Therefore NiCrAl alloy foams can be used in many applications such as fluids heating, electro-thermal catalyst bed and so on. In this work the NiCrAl foams were made from NiCr foams by using pack-aluminizing and vacuum homogenizing heat treatment. Effects of the vacuum homogenizing heat treatment temperature on evaporation of metal elements were investigated. The composition and structure of the NiCrAl foams were analysed by SEM and XRD and their relationship with the apparent resistivity of NiCrAl foams was discussed. The results indicate that NiCrAl foams with uniform composition and structure can be prepared by the process of pack-aluminizing on NiCr foams. The composition of NiCrAl foams can be controlled by adjusting temperature of pack-aluminizing, and the uniform structure of NiCrAl foams is obtained after appropriate vacuum homogenizing heat treatment. After pack-aluminizing, the foams possessed multiphase structure consisting of Ni solid solution, Cr, Ni2Al3, NiAl, Ni3Al and their resistivity decreased with the Al content increasing. NiCrAl foams with low content of Al after vacuum homogenizing heat treatment had single Ni solid solution phase. The resistivity of NiCrAl foams is higher than NiCr foams's. NiCrAl foams exhibited the maximum apparent resistivity when the content of Al was about 5% (mass fraction). With the content of Al above 5% the resistivity of NiCrAl foams decreased due to the formation of Ni3Al phase. If the content of Cr and Al increased further Cr precipitation occurred in the alloy foams. Cr precipitation greatly lowered the resistivity of NiCrAl foams. NiCr30Al9 foam is not suitable as electro-thermal alloy.

Key wordspack-aluminizing    NiCrAl foam    vacuum homogenizing heat treatment    metal evaporation    apparent resistivity
收稿日期: 2012-07-25     
基金资助:

国家自然科学基金资助项目51275506

作者简介: 张月来, 男, 1983年生, 博士生

[1] Cooksona E J, Floyda D E, Shih A J. Int J Mech Sci, 2006; 48: 1314


[2] Amori K E, Laibi H A. Energy, 2011; 36: 4524

[3] Walther G, Kloden B, Buttner T, Weissgorber T, Kieback T,Bohm A, Naumann D, Saberi S, Timberg L. Adv Eng Mater, 2008; 10: 803

[4] Hodge A M, Dunand D C. Intermetallics, 2001; 9: 581

[5] Choe H, Dunand D C. Acta Mater, 2004; 52: 1283

[6] Liu P S, Fu C, Li T F, Yu Q, Lu M. Acta Metall Sin, 1999; 35: 509

(刘培生, 付超, 李铁藩, 于青, 吕明. 金属学报, 1999; 35: 509)

[7] Langlois S, Coeuret F. J Appl Electrochem, 1989; 19: 43

[8] Gibson L J, Ashaby M F. Cellular Solid: Structure and Properties.

2nd Ed, Cambridge: Cambridge University Press, 1997: 6

[9] Huang P Y. The Principle of Powder Metallurgy. 2nd Ed, Beijing: Metallurgical Industry Press, 1997: 20

(黄培云. 粉末冶金原理. 第二版, 北京: 冶金工业出版社, 1997: 20)

[10] Wang X, Yu J L. J Exp Mech, 2001; 16: 438

(王曦, 虞吉林. 实验力学, 2001; 16: 438)

[11] Goussery V, Bienwenu Y, Forest S, Gourgues A F, Colin C, Bartout J D. Adv Eng Mater, 2004; 6: 432

[12] Kenesei P, Kadar C, Rajkovits Z, Lendvai J. Scr Mater, 2004; 50: 295

[13] Michailidis N, Stergioudi F, Omar H, Tsipas D N. Adv Eng Mater, 2008; 10: 1122

[14] Zhang Y L, Duan D L, Zhao Y H, Li S. J Aeronaut Mater, 2011; 31(suppl): 255

(张月来, 段德莉, 赵宇航, 李曙. 航空材料学报, 2011; 31(增刊): 255)

[15] Duan D L. PhD Dissertation, Graduate University of Chinese Academy of Sciences, Beijing, 2006

(段德莉. 中国科学院研究生院博士学位论文, 北京, 2006)

[16] Goward G W, Boone D H, Giggins C S. ASM Trans Quart, 1967; 60: 228

[17] Goward G W. J Met, 1970; 22: 31

[18] Goward G W, Boone D H. Oxid Met, 1971; 3: 475

[19] Lin C C, Tu D, Shen P, Gan D. Chin J Mater Sci, 1984; 16A: 74

[20] Tu D C, Seigle L L. Thin Solid Films, 1982; 95: 47

[21] Huang H L, Chen Y Z, Gan D. Mater Sci Eng, 2002; A328: 238

[22] Huang H L, Gan D. Mater Sci Eng, 2008; A485: 550

[23] Chien A, Gan D, Shen P. Mater Sci Eng, 1996; A206: 215

[24] Raghavan V. J Phase Equilib Diff, 2010; 31: 381

[25] Huang W, Chang Y A. Intermetallics, 1999; 7: 863

[26] Dupin N, Ansara I, Sundman B. Calphad, 2001; 25: 279

[27] Kaufman L, Nesor H. Metall Mater Trans, 1974; 5B: 1623

[28] Bao E, Tian S J. Vacuum Heat Treatment. Shenyang: Liaoning Science and Technology Press, 2009: 25

(包耳, 田绍洁. 真空热处理. 沈阳: 辽宁科学技术出版社, 2009: 25)

[29] Tian S. The Physical Properties of Materials. Beijing: Beihang University Press, 2004: 37

(田莳. 材料物理性能. 北京: 北京航空航天大学出版社, 2004: 37)

[30] Merchant S M, Notis M R. Mater Sci Eng, 1984; 66: 47

[31] Oforka N C, Haworth G W. Scand J Metall, 1987; 16: 184
No related articles found!