Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 337-343    DOI: 10.3724/SP.J.1037.2010.00541
  论文 本期目录 | 过刊浏览 |
溶胶--凝胶法制备的Zn1-xCoxO晶体粉末的结构和磁性行为
高 茜,  孙本哲,  祁 阳,  齐连仲
东北大学理学院, 沈阳 110819
STRUCTURE AND MAGNETIC BEHAVIOR OF Zn1−xCoxO CRYSTAL POWDERS PREPARED BY SOL–GEL TECHNIQUE
GAO Qian, SUN Benzhe, QI Yang, QI Lianzhong
College of Sciences, Northeastern University, Shenyang 110819
引用本文:

高茜 孙本哲 祁阳 齐连仲. 溶胶--凝胶法制备的Zn1-xCoxO晶体粉末的结构和磁性行为[J]. 金属学报, 2011, 47(3): 337-343.
, , , . STRUCTURE AND MAGNETIC BEHAVIOR OF Zn1−xCoxO CRYSTAL POWDERS PREPARED BY SOL–GEL TECHNIQUE[J]. Acta Metall Sin, 2011, 47(3): 337-343.

全文: PDF(1195 KB)  
摘要: 利用溶胶--凝胶法制备了Zn1-xCoxO(x=0.01-0.05, 原子分数)纳米晶体粉末, 利用XRD, TEM和SEM对其结构、结晶状态、形貌和成分进行了表征和分析. 结果表明, 所有样品均由尺寸约为100 nm的晶体颗粒组成,Zn1-xCoxO的晶格常数均比未掺杂的ZnO晶格常数小,且保持了单一纤锌矿ZnO结构, 实际掺杂浓度与名义掺杂浓度基本匹配.振动样品磁强计测试结果显示, 所有样品都具有室温铁磁性. 结合微结构,确定该铁磁性为材料的本征属性, 并推断O空位是铁磁交换作用的媒介, 晶粒度的大小也影响了样品的磁性行为.
关键词 溶胶-凝胶法 Zn1-xCoxO 室温铁磁性    
Abstract:ZnO–based diluted magnetic semiconductors (DMSs) have been considered as one of the promising candidates for fabricating DMSs due to their initial prediction in theory of having the Curie temperature greater than room temperature, its high solubility for transition metals, and its superior semiconductor properties. Recently, Co substituted ZnO DMSs were reported frequently to show ferromagnetic properties at room temperature. However, various subsequent studies do not seem to converge on the origin of room–temperature ferromagnetism. Among the controversy, Co–cluster, Co–oxides and substitutions of Co for Zn are typical viewpoints. Meanwhile, it is not completely understood how the fabricating process influence the magnetic properties of Co–doped ZnO DMS. For this purpose, relationships among Co–doping concentration, sintered temperature, microstructure and magnetic properties of ZnO need to be invesigated particularly. In this paper, Zn1−xCoxO (x=0.01,0.02, 0.03, 0.04 and 0.05, atomic fraction) nanocrystal powders were prepared by sol–gel technique. The crystal structure, lattice parameters, orphology and composition were characterized and analyzed by XRD, TEM, SEM and EDS, respectively. The magnetic properties were examined at room temperature sing a vibrating sample magnetometer (VSM). It can be found that all the samples are composed of the particles with hexagonal wurtzite structure and the sizes of the particles are about 100 nm. For all synthesized Zn1−xCoxO samples, the lattice constants are smaller than those of un–doping ZnO crystals under the condition of the same sintered temperature. It indicates Co2+ ions have substituted Zn2+ sites. All the samples exhibit room–temperature ferromagnetic characteristics, and the ferromagnetism is their intrinsic attribute, in which the Zn0.98Co0.02O sample sintered at 500 and 700 ℃ has the highest coercivity (Hc) of 334.02 Gs and the highest remanent magnetization ratio (Mr/Ms) of 0.1813, respectively, and the Zn0.96Co0.04O sample sintered at 950 ℃ has the maximum magnetic energy product (BH) of 1.764×10−4 J/kg ad saturation magnetization (Ms) of 0.5583 Am2/kg. he magnetic behaviors of tese samples vary not only with the cocetration of Co, but also with the size of crystal grains and te concentration of oxygen vacacies. It can be found that the moderate Co content and the lager size of crystal grains are in favour of increasing room–temperature ferromagnetic characteristics. Meawhile, as far as the same concentration of Co is concened, the smaller volume of the cecontributes to increase room–temperature ferromagnetism.
Key wordssol–gel technique    Zn1−xCoxO    room temperature ferromagnetism
收稿日期: 2010-10-12     
ZTFLH: 

O472+5

 
基金资助:

辽宁省科技计划项目200822208和沈阳市科技计划项目1091139-9-00资助

作者简介: 高茜, 女, 1963年生, 讲师, 博士生
[1] Shen W, Wang J, Duan Y, Wang Q, Zeng Y P. J Semicond, 2005; 11: 2069

[2] Wang X D, Song J H, Jung H J. Science, 2007; 316: 102

[3] Jin Z W, Fukumura T, Kawasaki M. Appl Phys Lett, 2001; 78: 3824

[4] Dietl T, Ohno H, Mstukura F, Cibert J, Ferrand D. Science, 2000; 287: 1019

[5] Zheng R K, Liu H, Zhng X X, Ry V A L, Djuriˇsiæ A B. Appl PhyLett, 2004; 85: 2589

[6] Lawes G, Risbud A S, Ramirez A P, Seshadri R. Phys Rev, 2005; 71B: 045201

[7] Park J H, Kim M G, Jang H M, Sangwoo R, Kim M Y. Appl Phys Lett, 2004; 84: 1338

[8] Yan G Q, Xie K X, Mo Z R, Lu Z L, Zou W Q, Wang S, Yue F J, Wu D, Zhang F M, Du Y W. Acta Phys Sin, 2009; 58: 1237

(严国清, 谢凯旋, 莫仲荣, 路忠林, 邹文琴, 王申, 岳凤娟, 吴镝, 张凤鸣, 都有为. 物理学报, 2009; 58: 1237)

[9] Wang Y, Sun L, Han D D, Liu L F, Kang J F, Liu X Y, Zhang X, Han R Q. Acta Phys Sin, 2006; 55: 6651

(王漪, 孙雷, 韩德栋, 刘力锋, 康晋锋, 刘晓彦, 张兴, 韩汝琦. 物理学报, 2006; 55: 6651)

[10] Chen J, Jin G J, Ma Y Q. Acta Phys Sin, 2009; 58: 2707

(陈静, 金国钧, 马余强. 物理学报, 2009; 58: 2707)

[11] Chamber S, Vuthasans T, Farrowr F. App Phys Lett, 2001; 79: 3467

[12] Cheng X W, Li X, Gao Y L, Yu Z, Long X, Liu Y. Acta Phys Sin, 2009; 58: 2018

(程兴旺, 李祥, 高院玲, 于宙, 龙雪, 刘颖. 物理学报, 2009; 58: 2018)

[13] C´espedes E, Castro G R, Jim´enez–Villacorta F, Andr´es A, Prieto C. Phys Condens Matter, 2008; 20: 095207

[14] Sayak G, Anil K P S. J Magn Magn Mater, 2008; 320: L93

[15] Hsu H S, Huang C A. Appl Phys Lett, 2006; 88: 242507

[16] Kittilstved K R. Phys Rev Lett, 2006; 97: 037203

[17] Sati P. Superlattices Microstruct, 2007; 42: 191

[18] Dietl T, Andrearczyk T, Lipi´nska A. Phys Rev, 2007; 76B: 155312

[19] Redman M J, Steward E G. Nature, 1962; 193: 867

[20] Nam K M, Shim J H, Han D W, Kwon H S, Kang Y M, Li Y, Song H, Seo W S, Park J T. Chem Mater, 2010; 22: 4446

[21] Herbert T K. J Ind Eng Chem, 1914; 6: 115

[22] Ghosh M, Sampathkumaran E V, Rao C N R. Chem Mater, 2005; 17: 2348

[23] Casas–Cabanas M, Binotto G, Larcher D, Lecup A, Giordani V, Tarascon J M. Chem Mater, 2009; 21: 1939

[24] Zhang G Y, Xiu X Q, Zhang R, Tao Z K, Cui X G, Zhang J C, Xie Z L, Xu X N, Zheng Y D. J Semicond, 2008; 29: 1156

(张国煜, 修向前, 张荣, 陶志阔, 崔旭高, 张佳辰, 谢自力, 徐小农, 郑有dou. 半导体学报, 2008; 29: 1156)

[25] Jauch W, Reehuis M, Bleif H J, Kubanek F, Pattison P. Phys Rev, 2001; 64B: 052102
[1] 厉英 马北越 王臻明 姜茂发. Na1.4Co2O4基热电材料的溶胶-凝胶法制备及表征[J]. 金属学报, 2011, 47(1): 109-114.
[2] 季刚; 张云鹏; 颜世申; 梅良模; 张泽 . 氧分压对Zn 1-xCo xO 1-δ磁性半导体磁特性的调控作用[J]. 金属学报, 2008, 44(11): 1399-1403 .
[3] 周宏明; 易丹青; 余志明; 肖来荣; 李荐; 王斌 . 溶胶-凝胶法制备的ZnO∶Al薄膜的微观结构及光学、电学性能[J]. 金属学报, 2006, 42(5): 505-510 .