Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 1006-1012    
  论文 本期目录 | 过刊浏览 |
压铸镁合金激光焊气孔形成原因的实验研究
单际国1;2;张婧1;郑世卿1;陈武柱1;任家烈1
1. 清华大学机械工程系; 北京 100084
2. 清华大学先进成形制造教育部重点实验室; 北京 100084
EXPERIMENTAL STUDY ON THE REASON OF PORE FORMATION IN LASER WELDING OF DIE–CAST MAGNESIUM ALLOY
SHAN Jiguo 1;2; ZHANG Jing 1; ZHENG Shiqing 1; CHEN Wuzhu 1; REN Jialie 1
1. Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2. Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Tsinghua University Beijing 100084
引用本文:

单际国 张婧 郑世卿 陈武柱 任家烈. 压铸镁合金激光焊气孔形成原因的实验研究[J]. 金属学报, 2009, 45(8): 1006-1012.
, , , , . EXPERIMENTAL STUDY ON THE REASON OF PORE FORMATION IN LASER WELDING OF DIE–CAST MAGNESIUM ALLOY[J]. Acta Metall Sin, 2009, 45(8): 1006-1012.

全文: PDF(1582 KB)  
摘要: 

压铸镁合金因含气量高而使得激光焊接气孔问题非常突出, 为实现压铸镁合金的低气孔率焊接技术, 通过对母材固态加热前后气孔特征参数、密度变化的分析以及焊前除氢后施焊与不除氢施焊气孔倾向的比较, 研究了压铸镁合金中气体来源的特点及气孔形成过程. 结果表明, 母材中同时含有分子氢和原子氢, 以高压气孔形式存在的分子氢以及以过饱和固溶形式存在的原子氢均是导致压铸镁合金激光焊产生大量气孔的原因. 而向焊缝中引入Zr元素可以显著降低气孔倾向, 但Zr的作用机理还有待于深入研究.

关键词 气孔 激光焊 压铸镁合金 分子氢 原子氢    
Abstract

Because of their low density, high strength-to-weight ratio and high damping capacity, magnesium alloys have gained increasing applications in many fields, especially for die-cast magnesium alloys. The application of die-cast magnesium alloys in structures and repair welding of casting defects necessitates the development of welding techniques. As a high energy density thermal source, laser welding can reduce many welding defects compared with conventional welding methods, but pore formation during welding of die-cast magnesium alloys is still a severe problem that has not been solved. This paper seeks to identify the mechanism of pore formation during laser welding of die-cast magensium alloys and search for a metallurgic solution of porosity. The great tendency to pore formation in die-cast magnesium alloys is attributed to high gas content in the base metal. The characteristic of gas source in die-cast magnesium alloys and the process of pore formation during laser welding are studied by some experiments including analysis of characteristic parameters of pores (porosity, average diameter and number densities), change of densities before and after heating(350℃, holding time 1 h) and pore formation tendency under different vacuo heating conditions (heating the base metal to 350℃ under vacuum environment of different holding time). The results show that heating increases porosity, average diameter and number densities, which lead to the reduction of bulk density. Vacuo heating before welding can reduce porosity to a great extent, and with holding time prolonging, porosity reduces. In die casting, there are molecular hydrogen and atomic hydrogen in die-cast magnesium alloys. The hydrogen gas (molecular hydrogen) in high pressure pores in the base metal expands sharply in the molten pool, and the oversaturated atomic hydrogen can also form new pores or contribute to the growth of exsisting pores. That is to  say that both molecular hydrogen and atomic hydrogen contribute to the pore formation of die-cast magnesium alloys during laser welding. During vacuo heating before welding, atomic hydrogen can escape in part through diffusion, thus reducing the tendency to form pores. With holding time of vacuo heating prolonging, the amount of atomic hydrogen escaping from the base metal increases, thus porosity reduces. Adding elements, which can combine hydrogen to form hydride, may be a possible solution to pore formation in die-cast magnesium alloys. Preliminary experiments show that adding Zr to welds during welding can reduce the tendency to form pores obviously, the reason for this needs further research.

Key wordspor    laser welding    die–casmagnesiualloys    hydrogen gas    atomic hydrogn
收稿日期: 2008-12-24     
ZTFLH: 

TG456.7

 
基金资助:

国家自然科学基金项目(50775124)和高等学校博士学科点专项科研基金项目(20060003070)资助

作者简介: 单际国, 1965年生, 教授, 博士

[1] Pan J L. Elecr Weld Machine, 2005; 35(9): 1
(潘际銮.电焊机, 2005; 35(9): 1)
[2] Weisheit A, Galun R, Mordike B L. Weld J, 1998; 77(4): 148
[3] Zhao H, DebRoy T. Weld J, 2001; 80(8): 204
[4] Chen Z H, Yan G , Chen J H, Quan Y J, Wang H M, Chen D. Magnesium Alloys. Beijing: Chemical Industry Press, 2004: 38
(陈振华, 严红革, 陈吉华, 全亚杰, 王慧敏, 陈鼎. 镁合金. 北京: 化学工业出版社, 2004: 38)
[5] Leopold F, Gustaf L. Translated by Lu Y M, Xu W M. Druckgiess–Technik. Beijing: Defense Industry Press, 1982: 5
(利奥波德?弗罗梅尔, 古斯塔夫?利比等, 卢运模, 许文茂 译. 压力铸造技术. 北京: 国防工业出版社, 1982: 5)
[6] J D Fast. Translated by Diao W T and Liang B X. Gases in Metals. Beijing: Metallurgical Industry Press. 1983:134
(J. D. 法斯特 著, 刁伟涛, 梁新邦 译. 金属中的气体. 北京: 冶金工业出版社, 1983: 134)
[7] Wang Z J, Li D S, Liao P L, Luo Y C, Yu G Q. Gases and Inclusions in Cast Aluminum Alloys. Beijing: Weapon Industry Press, 1989: 12
(王肇经, 李东升, 廖品伦, 罗胤春, 余光琼. 铸造铝合金中的气体和非金属夹杂物. 北京: 兵器工业出版社, 1989: 12)
[8] Cheng X Y, Xiong S M. Foundry, 2008; 7: 661
(程晓宇, 熊守美. 铸造, 2008; 7: 661)
[9] Yu X C, Zhao H Y. J Iron Steel Res, 1989; 6(3): 100
(余新昌, 赵惠元.钢铁研究总院学报, 1989; 6(3): 100)
[10] Wang N C, Yu G H. J Vac Sci Technol, 1984; 4: 23
(王念慈, 俞冠浩. 真空科学与技术学报, 1984; 4: 23)
[11] Батншeв А И. . Crystallization of Metal and Alloys under Pressure. Harbin: Harbin University of Techonology Press, 1987: 41
(阿?依?巴迪舍夫. 金属和合金在压力下结晶. 哈尔滨: 哈尔滨工业大学出版社. 1987: 41)
[12] I. J. Polmear. Light Alloys: Metallurgy of the Light Metals. London: E. Arnold, 1995: 207
[13] Sturkev L. TMS AIME. 1960; 218: 466
[14] Zhang S Q. Acta Metall Sin, 1989; 25: 346
(张少卿. 金属学报, 1989; 25: 346)

[1] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[2] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[3] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[4] 喻程, 吴圣川, 胡雅楠, 张卫华, 付亚楠. 铝合金熔焊微气孔的三维同步辐射X射线成像*[J]. 金属学报, 2015, 51(2): 159-168.
[5] 卓伟佳, 刘源, 李言祥. 单室Gasar工艺中抽拉速率对藕状多孔Cu气孔形貌的影响*[J]. 金属学报, 2014, 50(8): 921-929.
[6] 李再久, 金青林, 杨天武, 周荣, 蒋业华. 金属-氢共晶定向凝固热力学模型*[J]. 金属学报, 2014, 50(4): 507-514.
[7] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[8] 李正扬,朱鸣芳,戴挺. Al-7%Si合金显微气孔形成的模拟研究[J]. 金属学报, 2013, 49(9): 1032-1040.
[9] 周惦武,彭艳,徐少华,刘金水. 添加Sn粉激光焊接钢/铝合金异种金属的显微组织与性能[J]. 金属学报, 2013, 49(8): 959-968.
[10] 裴莹蕾,吴爱萍,单际国,任家烈. 基于熔池流动分析的高速激光焊驼峰焊道形成过程研究[J]. 金属学报, 2013, 49(6): 725-730.
[11] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[12] 杨成功,单际国,任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制[J]. 金属学报, 2013, 49(2): 199-206.
[13] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[14] 杨成功,单际国,任家烈. TiNi合金激光焊接接头形状恢复温度的研究[J]. 金属学报, 2012, 48(5): 513-518.
[15] 王向杰 游国强 张均成 龙思远. 压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究[J]. 金属学报, 2012, 48(12): 1437-1445.