Please wait a minute...
金属学报  2007, Vol. 43 Issue (6): 607-611     
  论文 本期目录 | 过刊浏览 |
热传导反算模型的建立及其在求解界面热流过程中的应用
郭志鹏 熊守美 曺尚铉 崔正吉
清华大学机械工程系; 先进成形制造教育部重点实验室; 北京 100084
引用本文:

郭志鹏; 熊守美; 曺尚铉; 崔正吉 . 热传导反算模型的建立及其在求解界面热流过程中的应用[J]. 金属学报, 2007, 43(6): 607-611 .

全文: PDF(218 KB)  
摘要: 基于热传导反算中的非线性估算法,建立了求解界面热流及换热系数的数学模型,并在此基础上开发了热传导反算程序。通过在网格边界上施加三角形热流,求解出网格内部不同位置点的温度变化曲线,然后以求解出的温度为输入数据,利用反算程序求解出界面热流,通过对比求解的热流和实际的热流验证了该模型的准确性。同时本文还分析了测温传感器的滞后、热流形状、计算参数、采样频率以及测温点离表面的距离对于计算结果的影响,并且针对相关问题提出了解决方案。
关键词 非线性估算法界面换热热传导反问题    
Abstract:A mathematic model for the determination of the surface heat flux and heat transfer coefficient was built based on one of the inverse heat transfer methods-the nonlinear estimation method. A general inverse heat transfer analysis computer program was developed and used to estimate the heat flux history by the temperature data generated by applying a triangle heat flux on one of the one dimensional mesh boundaries. Validation of the inverse heat transfer program was conducted by comparing the estimated heat flux with the triangle heat flux history. The influences of the thermocouple delay, the shape of the heat flux, calculation parameters, temperature sampling frequency and the distance from the temperature measurement point to the surface on the prediction of the surface heat flux were also studied. Additionally, approaches in reducing such influences were also discussed in this paper.
Key wordsInverse heat transfer problems    Nonlinear estimation method    Interfacial heat transfer
收稿日期: 2006-10-23     
ZTFLH:  TG249.2  
[1]Guthrie R I L.Metall Mater Trans,2000;31B:1031
[2]Griffiths W D.Metall Mater Trans,2000;31B:285
[3]Santos C A,Quaresma J M V,Garcia A.J Alloy Compd, 2001;319:179
[4]Lau F,Lee W B,Xiong S M,Liu B C.J Mater Proc Technol,1998;79:25
[5]Ho K,Pehlke R D.Metall Mater Trons,1985;16B:585
[6]Dour G,Dargusch M,Davidson C,Nef A.J Mater Proc Technol,2005;169:223
[7]Hines J A.Metall Mater Trans,2004;35B:299
[8]Beck J V,Blackwell B,Clair C R St.Inverse Heat Con- duction Ill-posed Problems.New York:Wiley,1985:145
[9]Michalski L,Echersdort K,McGhee J.Temperature Mea- surement.New York:Wiley,1991:230
[1] 邵珩,李岩,南海,许庆彦. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究*[J]. 金属学报, 2015, 51(8): 976-984.
[2] 曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用*[J]. 金属学报, 2015, 51(6): 745-752.
[3] 程柏松,肖纳敏,李殿中,李依依. 界面换热系数对淬火过程变形模拟影响的敏感性分析[J]. 金属学报, 2012, 48(6): 696-702.
[4] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.
[5] 郭志鹏; 熊守美; 曺尚铉; 崔正吉 . 合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响[J]. 金属学报, 2008, 44(4): 433-439 .
[6] 郭志鹏; 熊守美; 曹尚铉; 崔正吉 . 铝合金高压铸造过程铸件与铸型间的界面热交换系数的研究[J]. 金属学报, 2007, 42(1): 103-106 .