Please wait a minute...
金属学报  2007, Vol. 43 Issue (4): 399-403     
  论文 本期目录 | 过刊浏览 |
LC4CS铝合金的超高周疲劳寿命分布
姚卫星;郭盛杰
南京航空航天大学
Gigacycle Fatigue Life Distribution of Aluminum Alloy LC4CS
Wei-Xing YAO
南京航空航天大学
引用本文:

姚卫星; 郭盛杰 . LC4CS铝合金的超高周疲劳寿命分布[J]. 金属学报, 2007, 43(4): 399-403 .
, . Gigacycle Fatigue Life Distribution of Aluminum Alloy LC4CS[J]. Acta Metall Sin, 2007, 43(4): 399-403 .

全文: PDF(473 KB)  
摘要: 采用超声高频疲劳试验机进行了LC4CS铝合金实验样本容量为66的超高周疲劳寿命实验.结果表明, 超高周疲劳寿命具有双峰分布特征, 这一特征与疲劳裂纹的萌生点有关:较短疲劳寿命的样品的裂纹萌生于夹杂等缺陷处, 而较长疲劳寿命的样品的裂纹萌生于表面. 寿命分布的双峰特征使得传统的升降法不能用于确定材料的超高周疲劳的条件疲劳极限, 超高周疲劳寿命的分散性远大于低周和高周疲劳寿命的分散性.
关键词 LC4CS铝合金超高周疲劳寿命分布    
Abstract:Very high cycle fatigue (VHCF) test of 66 aluminum alloy LC4CS specimens was done by piezo-electric fatigue testing machine and fatigue life data were obtained. It is found that the fatigue life distribution of LC4CS under very high cycle fatigue has the duplex peak property and this property is related with the locations of fatigue crack initiation. For the specimens with shorter fatigue life the fatigue cracks initiate at the defects such as inclusions and caves and for the longer the cracks initiate at the surfaces of the specimens. This property makes it inconsequential that the staircase method is used to measure the fatigue limit, and the fatigue life deviation of the VHCF is far larger than those of low cycle fatigue (LCF) and high cycle fatigue (HCF).
Key wordsLC4CS aluminium alloy    very high cycle fatigue    life distribution    duplex peak property    deviation
收稿日期: 2006-07-27     
ZTFLH:  TB114.3  
[1]Naito T,Ueda H,Kikuchi M.J Soc Mater Sci,1983;32: 1162
[2]Lukas P,Kunz L.Fatigue Fract Eng Mater Struct,2002; 25:747
[3]Emura H,Asami K.Trans JSME,1989;55A:45
[4]Kuroshima Y,Saito Y,Shimizu M,Kawasaki K.Trans JSME,1994;60A:2710
[5]Nakamura T,Kaneko M,Tanabe T,Jinbo K,Nagai F. Trans JSME,1995;61A:441
[6]Wang Q Y.J Mech Strength,2002;24:81 (王清远.机械强度,2002;24:81)
[7]Umezawa O,Nagai K.Metall Mater Trans,1998;29A: 809
[8]Umezawa O,Nagai K.ISIJ Int,1997;37:1170
[9]Danninger H,Spoljaric D,Weiss B,Stickler R.Z Metallkd, 1998;89:135
[10]Bathias C.Eng Mater Struct,1999;22:559
[11]Mugahrabi H.Fatigue Fract Eng Mater Struct,1999;22: 633
[12]Murakami Y,Nomoto T,Ueda T.Mater Struct,1999;22: 581
[13]Murakami Y,Takada M,Toriyama T.Int J Fatigue,1998; 16:661
[14]Wang Q Y,Berard J Y,Dubarre A,Baudry G,Rathery S,Bathias C.Fatigue Fract Eng Mater Struct,1999;22: 667
[15]Wang Q Y,Wang Z G,Li S X.Electr Drive Locomot, 2003;(Suppl.):28 (王清远,王中光,李守新.机车电传动,2003;(增刊):28)
[16]Xue H Q,Tao H,Wang H.Mech Sci Technol,2004;23(4): 471 (薛红前,陶华,王弘.机械科学与技术,2004;23(4): 471)
[17]Xue H Q,Tao H,Wang H.J Northwest Polytech Univ, 2004;22:108 (薛红前,陶华,王弘.西北工业大学学报,2004;22:108)
[18]Doi K,Hanami K,Teraoka T,Terauchi S,Sugimoto T. Powder Metall Technol,2005;23:88 (Doi K,Hanami K,Teraoka T,Terauchi S,Sugimoto T.粉末冶金技术,2005;23:88)
[19]Shao H H,Chen G.Trans Chin Soc Attic Mach,2004; 35(6):185 (邵红红,陈光.农业机械学报,2004;35(6):185)
[20]Masuda C,Nishijiama S,Tanaka Y.Trans JSME,1986; 52A:847
[21]Kanazawa K,Nishijima S.J Soc Mater Sci,1997;46:1396
[22]Gao Z T.Handbook of Fatigue Properties of Aeronauti- cal Metals.Beijing:Institute of Aeronautical Materials, 1981 :155 (高镇同.航空金属材料疲劳性能手册.北京:北京航空材料研究所,1981:155)
[1] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[2] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[3] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[4] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[5] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[6] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[7] 李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
[8] 李永德; 李守新; 杨振国; 柳洋波; 翁宇庆; 惠卫军; 戎利建 . 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68 .
[9] 左景辉; 王中光; 韩恩厚 . Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709 .
[10] 聂义宏; 惠卫军; 傅万堂; 翁宇庆; 董瀚 . 中碳高强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43(10): 1031-1036 .
[11] 张继明; 杨振国; 李守新; 李广义; 惠卫军; 翁宇庆 . 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42(3): 259-264 .