Please wait a minute...
金属学报  2007, Vol. 43 Issue (3): 315-320     
  论文 本期目录 | 过刊浏览 |
含硅的低合金超高强度贝氏体钢的晶粒细化与冲击能提高
高宽 王六定 朱明 陈景东 施易军 陈国栋
西北工业大学理学院应用物理系
Refinement of Grain and Enhancement of Impact Energy Absorption for Low-Alloy Ultra-High Strength Bainite Steels Containing Silicon
引用本文:

高宽; 王六定; 朱明; 陈景东; 施易军; 陈国栋 . 含硅的低合金超高强度贝氏体钢的晶粒细化与冲击能提高[J]. 金属学报, 2007, 43(3): 315-320 .

全文: PDF(974 KB)  
摘要: 对系列低碳、超高强度贝氏体钢(LUHSBS),通过审慎地使用硅、锰、镍等合金元素并有效地控制相变温度、冷却与回火参数,强韧性结合良好,又冲击能(AKV ≥185 J)与同强度(>1500 MPa)的高级马氏体钢23MnNiCrMo相比提高三倍以上。强度与韧性增强的根本原因在于组织细化、贝氏体铁素体(BF)中含碳量增加、碳化物消除以及存在较高体积分数的膜状残余奥氏体(AR)。原子力显微镜和扫描隧道显微镜分析证实:钢中不存在损伤韧性的块状AR区。不仅亚单元被超细化,而且超细亚晶粒的平均尺寸小于20 nm以及部分切变单元的平均厚度仅约1.6 nm。所有这些都是影响钢的强度、AR稳定性和AKV的主要原因。此外,对强度与韧性改善的物理机制还进行了深入的分析。
关键词 贝氏体束贝氏体板条亚单元精细结构    
Abstract:Through judiciously using the silicon, manganese and nickel as the alloying elements and effectively controlling the transformation temperature, cooling and tempering parameters for a series of low alloy ultrahigh strength bainitic steels (LUHSBS), the combination of strength and toughness are very excellent and the impact energy absorption (AKV ≥185 J) has been tripled compared to the previously advanced martensitic steel 23MnNiCrMo with the same strength level (>1500 MPa). The basic reasons giving rise to the enhancement of strength and toughness consist in the increase of carbon content and the refinement of sublaths in the bainitic ferrite (BF) and the very thin films of retained austenite (AR). It is confirmed by the atomicforce microscope (AFM) and scanning tunneling microscope (STM) that there was no any large bulky areas of AR in the structure which is less stable and will reduce the impact toughness of bainitic steels. Not only is the sublaths is significantly refined, but also the average size of subgrains is less than 20 nm and the average thickness of shear units in a BF lath is only about 1.6 nm. The refinement of microstructure, the enrichment of interstitial atom carbon in BF and the increase of both the dislocation density and the volume fraction of AR are some critical factors that affect the ultimate tensile strength, the stability of AR and the impact energy absorption. Furthermore, the physical mechanism on the improvement of the combination of strength and toughness is in depth discussed.
Key wordsbainitic ferrite    bainitic laths    sub-units    refined microstructure
收稿日期: 2006-06-29     
[1]Hammond R I,Proud W G.Proc R Soc Lond,2004;460A: 2959
[2]Bhadeshia H K D H.Ironmaking Steelmaking,2005;32: 405
[3]Caballero F G,Bhadeshia H K D H,Mawella K J A,Jones D G,Brown P.Mater Sci Technol,2001;17:517
[4]Miihkinen V T T,Edmonds D V.Mater Sci Technol,1987; 3:422
[5]Miihkinen V T T,Edmonds D V.Mater Sci Technol,1987; 3:432
[6]Miihkinen V T T,Edmonds D V.Mater Sci Technol,1987; 3:441
[7]Caballero F G,Bhadeshia H K D H,Mawella K J A,Jones D G,Brown P.Mater Sci Technol,2001;17:512
[8]Tomita Y,Okawa T.Mater Sci Technol,1995;11:245
[9]Tomita Y.Mater Sci Technol,1995;11:259
[10]Bhadeshia H K D H.Mater Sci Technol,2005;21:1293
[11]Kang M K,Sun J L,Yang Q M.Metall Trans,1990;21 A:853
[12]Wang L D,Zhu M,Zhou W M,Chen J D,Shi Y J,Chen G D,Zhang W.Mater Sci Forum,2007;539—543:4562
[13]Toshiki N,Koichi G,Hiroazu T,Kazumasa Y.NIPPON Steel Technol Rep,No.88,2003
[14]Arif Basuki,Etienne Aernoudt.J Mater Process Technol, 1999;89—90:37
[15]Zhou W L,Guo J T,Chen R S,Zhou J Y.Acta Metall Sin,2000;36:798 (周文龙,郭建亭,陈荣石,周继扬.金属学报,2000;36:798)
[16]Gacrcia C,Peet M,Caballero F G,Bhadeshia H K D H. Mater Sci Technol,2004;20:814
[17]Peer M,Babu S S,Miller M K,Bhadeshia H K D H.Scr Mater,2004;50:1227
[18]Wang L D,Jiang L Z,Zhu M,Liu X,Zhou W M,Li Y.J Phys D:Appl Phys,2004;37:2151
[19]Wang L D,Jiang L Z,Zhu M,Liu X,Zhou W M.J Mater Sci Technol,2005;21:710
[20]Caballero F G,Bhadeshia H K D H,Mawella K J A,Jones D G,Brown P.Mater Sci Technol,2002;18:279
[21]Kang Y,Bhadeshia H K D H.Mater Sci Technol,2006; 22:650
[22]Fang H S,Bai B Z,Xu P G,Zhang C,Yang Z G,Liu D Y.Heat Treat Met,2002;27(11):1 (方鸿生,白秉哲,徐平光,张弛,杨志刚,刘东雨.金属热处理,2002;27(11):1)
[23]Hsu T Y(Xu Z Y).Martensitic Transformation and Martensite.Beijing:Science Press,1999:568 (徐祖耀.马氏体相变与马氏体.北京:科学出版社,1999:568)
[1] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[2] 张威虎 张富春 张志勇 阎军峰. Pb0.5Sr0.5TiO3精细结构的第一性原理分析[J]. 金属学报, 2009, 45(2): 217-222.
[3] 董丹阳; 刘常升; 陈岁元; 张滨; 苗隽 . 激光熔覆 Fe--Si涂层的超精细结构[J]. 金属学报, 2008, 44(2): 188-192 .
[4] 方鸿生; 杨志刚; 杨金波; 白秉哲 . 钢中贝氏体相变机制的研究[J]. 金属学报, 2005, 41(5): 449-457 .
[5] 孙世清; 毛磊; 郭志猛; 殷声 . Cu-Fe-Cr原位复合材料中的纤维相[J]. 金属学报, 2003, 39(6): 565-568 .
[6] 赵玉珍; 李擘; 史耀武 . 超极钢焊接接头粗晶区的精细结构[J]. 金属学报, 2003, 39(5): 505-509 .
[7] 张弛; 方鸿生; 杨志刚; 白秉哲; 张文征 . 锰硅系贝氏体/马氏体复相钢中贝氏体精细结构的研究[J]. 金属学报, 2001, 37(6): 561-566 .
[8] 晁月盛; 曾繁武 . γ’-Fe4N磁粉的超精细结构及结构转变[J]. 金属学报, 2000, 36(3): 235-238 .
[9] 张彩碚; 董林 . 不锈钢/Al固液轧制复合板材界面的精细结构[J]. 金属学报, 1999, 35(2): 117-120 .
[10] 薄祥正;方鸿生;王家军;黄维刚;张柏清. Fe-C-Si-Mn合金中贝氏体表面浮突的精细结构[J]. 金属学报, 1998, 34(3): 225-231.
[11] 罗承萍;刘江文;肖晓玲. 38Si2Mn2Mo钢等温下贝氏体的精细结构和晶体学特征[J]. 金属学报, 1998, 34(10): 1009-1015.
[12] 李凤照;敖青;顾英妮;姜江;孙东升;戴吉岩;彭红樱. 贝氏体精细结构的透射电镜观察[J]. 金属学报, 1997, 33(3): 241-247.
[13] 方鸿生;杨志刚;王家军;郑燕康. 贝氏体和马氏体相变及应用的研究[J]. 金属学报, 1996, 32(4): 337-350.
[14] 李春明;方鸿生;郑燕康;王家军;杨志刚. Cu-Zn-Al合金贝氏体的亚单元及其激发形核、台阶生长[J]. 金属学报, 1996, 32(1): 1-5.
[15] 李斗星;平德海;宁小光;叶恒强. 界面精细结构与界面反应产物结构[J]. 金属学报, 1992, 28(7): 1-18.