Please wait a minute...
金属学报  2006, Vol. 42 Issue (4): 421-425     
  论文 本期目录 | 过刊浏览 |
O2在NiTi合金(100)表面吸附的理论研究
刘新;孟长功; 刘长厚
大连理工大学
First principle study of O2 adsorption on NiTi alloy (100) surface
大连理工大学
引用本文:

刘新; 孟长功; 刘长厚 . O2在NiTi合金(100)表面吸附的理论研究[J]. 金属学报, 2006, 42(4): 421-425 .

全文: PDF(781 KB)  
摘要: NiTi形状记忆合金是一种广泛使用的生物医学材料,表面形成的氧化膜是其具有良好生物相容性的基础。大量实验表明氧分子在NiTi合金表面的吸附是其形成氧化膜的关键。本文采用密度泛函方法应用赝势基组对NiTi合金(100)表面的电子结构以及氧分子的吸附和解离过程进行了系统研究。结果表明,Ti原子裸露表面比Ni原子裸露表面反应活性高,O2吸附为活化解离吸附,顶位吸附结构最不稳定,易向桥位或洞位吸附转化,桥位吸附对应的吸附结构最为稳定。态密度分析和结构分析表明,O原子与表面的相互作用主要是由O原子价轨道和NiTi合金杂化表面轨道贡献。
关键词 NiTi形状记忆合金表面吸附氧分子    
Abstract:NiTi shape memory alloy is widely used as a biomaterial for the good compatibilities of its surface titanium oxide. Oxygen adsorption on NiTi surface is important for the formation of titanium oxide. In this work, first principle pseudopotential plane wave calculations based on density functional theory and the generalized gradient approximation (GGA) have been used to study the electronic structure of NiTi (100) surface, molecular O2 and adsorption of O2 on the NiTi alloy (100) surface. The results show that Ti-terminated surface is more reactive than Ni-terminated surface. O2 is activated and will decompose upon adsorption. Among several possible adsorption configurations considered, the most stable one corresponds to bridge configuration and the top configuration is unstable. Structural and density of state (DOS) analysis shows the interaction of O atom and surface is the total contribution of valance orbital of O atom and hybridized surface orbital of NiTi alloy.
Key wordsNiTi shape memory alloy    surface adsorption    oxygen molecule
收稿日期: 2005-07-26     
ZTFLH:  TB381  
[1] Andreasen G. Am J Orthod, 1980; 78: 528
[2] Simon M, Athanasoulis C A, Kim D, Steinberg F L, Porter D H, Byse B H, Kleshinski S, Geller S, Orron D E, Walt-man A C. Work Prog Radiol, 1989; 172: 99
[3] Pocek M, Maspes F, Masala S, Squillaci E, Assegnati G, Moraldi A, Simonetti G. Eur Radiol, 1996; 6: 230
[4] Blum U, Voshage G, Lammer J, Beyersdorf F, Tollner D, Kretschmer G, Spillner G, Polterauer P, Nagel G, Holzen- bein T, Thumher S, Langer M. New Eng J Med, 1997; 336: 13
[5] Wever D J, Veldhuizen A G, de Vries J, Busscher H J, Uges D R, van Horn J R. Biomaterials, 1998; 19: 761
[6] Christine T, Maryam T, L'Hocine Y, Luc B, Dominique L P. J Biomed Mater Res, 1998; 43: 433
[7] Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, Salo T. J Biomed Mater Res, 1997; 35: 451
[8] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C. Comput Mater Sci, 2002; 25: 478
[9] Goedecker S. SIAM J Sci Comp, 1997; 18: 1605
[10] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Rev Mod Phys, 1992; 64: 1045
[11] Gonze X. Phys Rev, 1996; 54B: 4383
[12] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[13] Kresse G, Hafner J. J Phys-Condens Matter, 1994; 6: 8245
[14] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[15] Perdew J P, Wang Y. Phys Rev, 1992; 45B: 13244
[16] Perdew J P, Chevary J A, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Phys Rev, 1992; 46B: 6671
[17] Hammer B, Hansen L B, Norskov J K. Phys Rev, 1999; 59B: 7413
[18] Brandes EA, Brook G B. Smithells Metals Reference Book. 7th ed., London: Butterworkth-Heinemann, 1992: 361
[19] Kulkova S E, Valujsky D V, Kim J S, Lee G, Koo Y M. Phys Rev, 2002; 65B: 085410
[20] Lide D R. CRC Handbook of Chemistry and Physics. 84 ed., CRC Press, 2003: 9
[21] Xu Y, Mavrikakis M. Surf Sci, 2003; 538: 219
[22] Hua Y, Liu X, Meng C G. Yang D Z. J Mater Sci Technol, 2004; 20: 182
[23] Hua Y, Liu X, Meng C G, Yang D Z. J Wuhan Univ Technol Mater (Sci ed), 2003; 18: 6Z
[1] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[2] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[3] 柯常波,曹姗姗,马骁,黄平,张新平. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟[J]. 金属学报, 2013, 49(1): 115-122.
[4] 江鸿杰 柯常波 曹姗姗 马骁 张新平. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47(9): 1105-1111.
[5] 柯常波 马骁 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47(2): 129-139.
[6] 柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
[7] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[8] 姜海昌; 戎利建 . 多孔 NiTi形状记忆合金中 Ni的释放行为[J]. 金属学报, 2008, 44(2): 198-202 .
[9] 饶光斌; 王俭秋; 韩恩厚; 柯伟 . 应力诱发马氏体相变对TiNi形状记忆合金疲劳过程影响的原位实验观察[J]. 金属学报, 2002, 38(6): 575-582 .
[10] 伏晓国; 刘柯钊; 汪小琳; 柏朝茂; 赵正平; 蒋春丽 . O2在U和U-Nb合金表面吸附的XPS研究[J]. 金属学报, 2001, 37(6): 575-578 .