Please wait a minute...
金属学报  2006, Vol. 42 Issue (3): 273-279     
  论文 本期目录 | 过刊浏览 |
车轮钢中白点及其断口研究
任学冲;褚武扬;李金许;乔利杰
北京科技大学材料科学与工程学院
Research Of Flaking And Its Fractography In A Wheel Steel
引用本文:

任学冲; 褚武扬; 李金许; 乔利杰 . 车轮钢中白点及其断口研究[J]. 金属学报, 2006, 42(3): 273-279 .

全文: PDF(760 KB)  
摘要: 研究了车轮钢中白点的形成过程,制备了白点裂纹的真实断口,并和含白点试样的各种断口进行了对比。结果表明,先形成氢鼓泡,然后从鼓泡壁产生微裂纹,它们连接形成白点。白点断口和含白点试样的断口概念不同,前者为准解理,和氢致滞后开裂断口相同,但后者则依赖断裂方式和试样厚度。钢中白点除了产生二次裂纹外,对各种断口形貌均没有影响。车轮钢的滞后断裂由原子氢引起和白点无关。
关键词 白点车轮钢断口氢致滞后开裂    
Abstract:Forming process of flaking in a wheel steel has been investigated. The cracking surface of the flacking is got using a special method, and is compared to various fracture surfaces of samples containing flaking. The results show that a cavity with H2, i.e. hydrogen blistering, forms and grows firstly, then microcracks initiate from the wall of the blistering, grow and connect each other resulting in formation of flaking. The cracking surface of flaking is a different idea with fracture surface of the sample containing flaking. The former is quasi-cleavage, similar to that of hydrogen-induced delayed cracking, but the later is dependent upon the failure method and the thickness of the sample. There is no effect of flaking in the steel on various fracture surface morphologies besides secondary cracks. Hydrogen-induced delayed failure is due to atomic hydrogen instead of flaking.
Key wordsflaking    wheel steel    fracture surface    hydrogen-induced delayed cracking
收稿日期: 2005-06-21     
ZTFLH:  TB301  
[1] Hirth J P. Metall Trans, 1980; 11A: 861
[2] Smialowski M. Hydrogen in Steel. New York: Pergamon Press, 1962: 327
[3] Steiner J B. Current Solution to Hydrogen Problems in Steel. Metals Park, Ohio: ASM, 1982: 55
[4] Fruehan R J. Iron Steel Maker, 1997; 24: 61
[5] Akhurst K N, Pumphreg P H. Hydrogen in Metals. Paris: Pergamon Press, 1977: 3B1
[6] Chu W Y, Gao K W, Li J X, Wang Y B, Qiao L J. Steel Res, 2001; 72: 66
[7] Pollard M G. Proc Inst Mech Eng, 1999; 213F: 181
[8] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environment Fracture. Beijing: Science Press, 2001: 120 (褚武扬,乔利杰,陈奇志,高克玮.断裂与环境断裂,北京: 科学出版社,2001:120)
[9] Andrew J H, Lee H. J Iron Steel Inst, 1947; 156: 208
[10] Chen L, Liu M Z, Yin W Q. Acta Metall Sin, 1979; 15: 446 (陈廉,刘民治,尹万全.金属学报, 1979;15:446)
[11] Phillips A, Kevling V. Met Prog, 1969; 95: 81
[12] Chu W Y. Hydrogen Damage and Delayely Fracture. Beijing: Metallurgical Industry Press, 1988: 146 (褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社, 1988: 146)
[13] Peng X, Su Y J, Gao K W, Qiao L J, Chu W Y. Mater Lett, 2004; 58: 2073
[14] McLellan R R, Xu Z R. Scr Mater, 1997; 36: 1201
[15] Gavriljuk V G, Bugaev V N, Petrov Y N, Tarasenko A V, Yanchitski B Z. Scr Mater, 1996; 34: 903
[16] Galvele J R. Corros Set, 2004; 46: 1807
[1] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[2] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[3] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[4] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[5] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[6] 王效光,李嘉荣,喻健,刘世忠,史振学,岳晓岱. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51(10): 1253-1260.
[7] 颜莹,卢蒙,李小武. 预疲劳变形对粗晶纯Al单向拉伸行为的影响[J]. 金属学报, 2013, 49(6): 658-666.
[8] 董旭光,付俊伟,杨院生. Al和Zn对铸造Mg-5Sn合金微观组织和力学性能的影响[J]. 金属学报, 2013, 49(5): 621-628.
[9] 李秀程, 谢振家, 王学林, 王学敏, 尚成嘉. 高强度低碳贝氏体钢拉伸断口分离现象及机理研究[J]. 金属学报, 2013, 49(2): 167-174.
[10] 马跃 潘涛 江波 崔银会 苏航 彭云. S含量对高速车轮钢断裂韧性影响的研究[J]. 金属学报, 2011, 47(8): 978-983.
[11] 刘恩泽 郑志 佟健 宁礼奎 管秀荣. DZ468合金高周疲劳性能研究[J]. 金属学报, 2010, 46(6): 708-714.
[12] 张莹 张义文 张娜 刘明东 刘建涛. 粉末冶金高温合金FGH97的低周疲劳断裂特征[J]. 金属学报, 2010, 46(4): 444-450.
[13] 任学冲; 武明; 褚武扬; 李金许; 乔利杰; 江波 ; 陈刚; 崔银会 . 连铸温度和低倍组织对轮箍钢氢致开裂的影响[J]. 金属学报, 2007, 43(2): 149-153 .
[14] 任学冲 . 原子氢和白点对车轮钢力学性能影响的进一步研究[J]. 金属学报, 2007, 42(1): 53-58 .
[15] 武明; 褚武扬; 李金许; 姜波; 陈刚; 崔银会 . 应力和夹杂对车轮钢中氢鼓泡的影响[J]. 金属学报, 2006, 42(8): 815-819 .