Please wait a minute...
金属学报  2006, Vol. 42 Issue (3): 259-264     
  论文 本期目录 | 过刊浏览 |
汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为
张继明; 杨振国; 李守新; 李广义; 惠卫军; 翁宇庆
中国科学院金属研究所
VERY HIGH CYCLE FATIGUE BEHAVIOR OF 1800MPa CLASS AUTOMOTIVE SPRING STEEL
引用本文:

张继明; 杨振国; 李守新; 李广义; 惠卫军; 翁宇庆 . 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42(3): 259-264 .

全文: PDF(555 KB)  
摘要: 研究了54SiCrV6和54SiCr6两种洁净高强弹簧钢的超高周疲劳行为,并利用FESEM和EPMA对疲劳断口进行了观察。实验结果表明,在高应力幅区,两种钢的疲劳破坏均起源于表面基体,而在低应力幅区,疲劳开裂均发生在试样内部。54SiCrV6钢的S-N曲线为典型的台阶式曲线,在109循环周次内,其疲劳极限消失,而54SiCr6钢存在疲劳极限。疲劳断口分析表明,54SiCrV6钢内部破坏是由钢中小夹杂物的聚集引起的,而54SiCr6钢则起源于碳化物的偏聚。临界夹杂物尺寸的估算表明,当高强钢中的夹杂物尺寸大于临界夹杂物尺寸时,其疲劳极限消失;反之,则疲劳极限存在。
关键词 超高周疲劳S-N特征曲线疲劳极限临界夹杂    
Abstract:Very high cycle fatigue behaviors of 54SiCrV6 and 54SiCr6 clear high strength spring steels and the fractography observed by means of field emission scanning electron microscope (FESEM) and electron probe microanalyzer (EPMA) are investigated. Experimental results show that for two steels, fatigue failure originates from sample surface matrix at high stress amplitude and from sample interior at low stress amplitude. The S-N curve of 54SiCrV6 spring steel is a typical step-wise curve, and elimination of fatigue limit in 109 cycles regime, however, fatigue limit of 54SiCr6 steel exists. Analysis of fractography shows that internal failure initiates clusters of little inclusions in 54SiCrV6 steel and localized carbide in 54SiCr6 steel. Evaluation of critical inclusion size shows that, in 109 cycles regime, fatigue limit eliminates when inclusion size is greater than critical inclusion size in high strength steel. Contrary, fatigue limit exists.
Key wordsVery high cycle fatigue    S-N curve    fatigue limit    critical inclusion size
收稿日期: 2005-09-13     
ZTFLH:  TG142.1  
[1] Mukamami Y, Kawakami K, Saito M. Trans Jpn Soc Spring Res, 1990; 35: 1
[2] Larsson M, Melander A, Blom R, Preston S. Mater Sci Technol, 1991; 7: 998
[3] Hui W J, Dong H, Weng Y Q. J Iron Steel Res, 2001; 13: 67 (惠卫军,董瀚,翁宇庆.钢铁研究学报, 2001;13:67)
[4] Harada Y, Mori K. J Mater Process Technol, 2005; 15: 498
[5] Ai J H, Zhao T C, Gao H J, Hu Y H, Xie X S. J Mater Process Technol, 2005; 30: 390
[6] Nam W J, Lee C S, Ban D Y. Mater Sci Eng, 2000; A289: 8
[7] Shin J C, Lee S H, Ryu J H. Int J Fatigue, 1999; 21: 571
[8] Abe T, Furuya Y, Matsuoka S. Fatigue Fract Eng Mater Struct, 2004; 27: 159
[9] Furuya Y, Abe T, Matsuoka S. Fatigue Fract Eng Mater Struct, 2003; 26: 641
[10] Zhang J M, Yang Z G, Zhang J F, Li G Y, Li S X, Hui W J, Weng Y Q. Acta Metall Sin, 2005; 41: 145 (张继明,杨振国,张建锋,李广义,李守新,惠卫军,翁宇庆. 金属学报,2005;41:145)
[11] Shiozawa K, Lu L, Ishihara S. Fatigue Fract Eng Mater Struct, 2001; 24: 781
[12] Yang Z G., Li S X, Zhang J M, Zhang J F, Li G Y, Li Z B, Hui W J, Weng Y Q. Acta Mater, 2004; 52: 5235
[13] Zhang J M, Zhang J F, Yang Z G, Li G Y, Yao G, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2005; A394: 126
[14] Murakami Y, Nomoto T, Ueda T. Fatigue Fract Eng Mater Struct, 2000; 23: 893
[15] Wang Q Y, Berara J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[16] Lankford J. Int Met Rev, 1977; 22: 221
[17] Larsson M Melander A, Nordgren A. Mater Sci Technol, 1993; 9: 235
[18] Loren S. Int J Fatigue, 2003; 25: 129
[19] Murakami Y, Usuki H. Trans Jpn Soc Mech Eng, 1989; 55A: 213
[20] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Amsterdam: Elsevier, 2002: 91
[21] Yang Z G, Li S X, Zhang J M, Zhang J F, Li G Y, Li Z B, Hui W J, Weng Y Q. Acta Mater, 2004; 52: 5235l
[1] 刘汉青, 何超, 黄志勇, 王清远. TC17合金超高周疲劳裂纹萌生机理[J]. 金属学报, 2017, 53(9): 1047-1054.
[2] 张青松,朱振宇,高杰维,戴光泽,徐磊,冯健. 各向异性和偏轴加载对1050车轮钢疲劳性能的影响[J]. 金属学报, 2017, 53(3): 307-315.
[3] 刘小龙,孙成奇,周砚田,洪友士. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响*[J]. 金属学报, 2016, 52(8): 923-930.
[4] 朱莉娜,邓彩艳,王东坡,胡绳荪. 表面粗糙度对Ti-6Al-4V合金超高周疲劳性能的影响*[J]. 金属学报, 2016, 52(5): 583-591.
[5] 柏琳娜,刘福平,王邃,江峰,孙军,陈良斌,王丰元. Fe-C-Cu粉末锻造汽车发动机连杆的组织与力学性能*[J]. 金属学报, 2016, 52(1): 41-50.
[6] 张艳斌, 张立民, 张继旺, 曾京. 阳极氧化处理对2014-T6铝合金弯曲疲劳性能的影响*[J]. 金属学报, 2014, 50(6): 715-721.
[7] 张永健 惠卫军 项金钟 董瀚 翁宇庆. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880-886.
[8] 洪友士 赵爱国 钱桂安. 合金材料超高周疲劳行为的基本特征和影响因素[J]. 金属学报, 2009, 45(7): 769-780.
[9] 钱桂安 洪友士. 环境介质对40Cr结构钢高周和超高周疲劳行为的影响[J]. 金属学报, 2009, 45(11): 1356-1363.
[10] 张继旺 鲁连涛 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383.
[11] 李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
[12] 李永德; 李守新; 杨振国; 柳洋波; 翁宇庆; 惠卫军; 戎利建 . 氢对高强弹簧钢50CrV4超高周疲劳性能的影响[J]. 金属学报, 2008, 44(1): 64-68 .
[13] 左景辉; 王中光; 韩恩厚 . Ti-6Al-4V合金的超高周疲劳行为[J]. 金属学报, 2007, 43(7): 705-709 .
[14] 王庆娟; 徐长征; 郑茂盛; 朱杰武; M.Buksa; L.Kunz . 等径弯曲通道制备的超细晶铜的疲劳性能[J]. 金属学报, 2007, 43(5): 498-502 .
[15] 姚卫星; 郭盛杰 . LC4CS铝合金的超高周疲劳寿命分布[J]. 金属学报, 2007, 43(4): 399-403 .