Please wait a minute...
金属学报  2006, Vol. 42 Issue (11): 1197-1201     
  论文 本期目录 | 过刊浏览 |
TiC薄膜对轴承钢表面滚动接触疲劳寿命和力学性能的影响
刘洪喜 王浪平 王小峰 黄 磊 汤宝寅
哈尔滨工业大学现代焊接生产技术国家重点实验室;哈尔滨 150001
Effects of TiC Films on the Rolling Contact Fatigue Life and Mechanical Properties of Bearing Steel
LIU Hongxi; WANG Langping; WANG Xiaofeng; HUANG Lei; TANG Baoyin
State Key Laboratory of Advanced Welding Production Technology;Harbin Institute of Technology; Harbin 150001
引用本文:

刘洪喜; 王浪平; 王小峰; 黄; 磊; 汤宝寅 . TiC薄膜对轴承钢表面滚动接触疲劳寿命和力学性能的影响[J]. 金属学报, 2006, 42(11): 1197-1201 .
, , , , , . Effects of TiC Films on the Rolling Contact Fatigue Life and Mechanical Properties of Bearing Steel[J]. Acta Metall Sin, 2006, 42(11): 1197-1201 .

全文: PDF(924 KB)  
摘要: 摘要 利用等离子体浸没离子注入与沉积(PIII&D)技术在AISI52100轴承钢基体表面合成了碳化钛(TiC)薄膜.测试了合成薄膜后试样表面的化学组成、摩擦磨损性能、纳米硬度、弹性模量和滚动接触疲劳寿命,观察了疲劳破坏后试样断面的光学形貌.XRD结果表明处理后试样表面形成了TiC相.光学显微镜下疲劳裂纹的萌生和扩展形貌揭示出疲劳破坏可能存在表面磨损和膜层剥离两种形式.在赫兹接触应力为5.1GPa,90%置信区间条件下的疲劳寿命延长了5.5倍;最大微观硬度和弹性模量分别增加了28.4% 和 12.1%;相同磨损条件下的摩擦系数从0.95下降到0.15.因此,PIII&D技术能有效的提高轴承钢的滚动接触疲劳寿命和改善其表面的综合机械性能.
关键词 等离子浸没离子注入与沉积碳化钛薄膜滚动    
Abstract:ABSTRACT Titanium carbide (TiC) film is synthesized by plasma immersion ion implantation and deposition (PIII&D) technique on AISI52100 bearing steel surface. Testing include plan-view optical microscopy (OM), X-ray diffraction (XRD), friction and wear behaviors, rolling contact fatigue life and nanoindentation measurements. XRD patterns show that titanium carbide phase is formed in the film, and the microhardness of treated samples is higher than that of substrate. Rolling contact fatigue failure tracks were observed and analysised using conventional light microscope. Coated rolling elements failed in Surface wear or adhesive delamination, or a combination of these two modes depending upon the substrate bias voltage, implanted pulse width, treatment time and surface roughness. Results indicate that the maximum RCF life of the treated sample prolong by 5.5 times at a Hertzian stress level of 5.1GPa and 90% confidence level, respectively. Comparison with the substrate, the maximum microhardness and elastic modulus of treated specimen is increased by 28.4% and 12.1%, respectively. The friction coefficient decreased from 0.95 to 0.15 under identical wear conditions. This remarkable fatigue performance appears to be due to a combination of improved microstructure, adhesion, hardness and surface topography. Therefore, the PIII&D is regarded as one of promising technologies for improving the RCF life and mechanical properties of bearing.
Key wordsplasma immersion ion implantation and deposition    Titanium carbide film    Rolling contact fatigue (RCF)
收稿日期: 2005-12-31     
ZTFLH:  TG172.44  
[1] Wang Y L, Fernandez J E, Cuervo D G. Wear, 1996; 196: 110
[2] Kuhn M, Gold P W, Loos J. Surf Coat Technol, 2004; 177-178: 469
[3] Li M Y, Knystautas E J, Krishnadev M. Surf Coat Technol, 2001; 138: 220
[4] Sridhavan K, Wilson E H, Lawrence D F. Appl Surf Sci, 2004; 222: 208
[5] Stewart S, Ahmed R. Wear, 2002; 253: 1132
[6] Zhu M H, Zhou Z R, Kapsa P, Vincent L. Wear, 2001; 250: 650
[7] Tang B Y, Liu H X, Wang L P. Surf Coat Technol, 2004; 186: 320
[8] Yonekura D, Chittenden R J, Dearnley P A. Wear, 2005; 259: 779
[9] Anders A. Surf Coat Technol, 2002; 154: 152
[10] D J Re. In: Glocker D A, Shah S I, eds., Handbook of Thin Film Process Technology, Philadelphia, PA: Institute of Physics, 1995: 1
[11] Philadelphia, PA: Anders A. Handbook of Plasma Immersion Ion Implantation and Deposition. New York: John Wiley & Sons, 2nc; 2000: 32
[12] Chu P K, Tang B Y, Cheng Y C. Rev Sci Instrum, 1997; 68: 1866
[13] Polonsky I A, Keer L M. Wear, 1998; 215: 191
[14] Lover D G. A Ball-Rod Rolling Contact Fatigue Tester. In: Hoo J J C, ed, ASTM STP, Philadelphia, 1982: 107
[15] Chen Y H, Polonsky I A, Chung Y W. Surf Coat Technol, 2002; 154: 152
[16] Weirner A W. Carbide, Nitride and Boride Materials synthesis and Processing. London: Chapman and Hall, 1997: 650
[17] Ichimura H, Rodriguez F M, Rodrigo A. Surf Coat Technol, 2000; 127: 138
[18] Puchi-Cabrera E S, Berrios J A, Teer D G. Surf Coat Technol, 2002; 157: 185
[19] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1562
[1] 邱龙时, 赵婧, 潘晓龙, 田丰. 高速钢表面TiN薄膜的界面疲劳剥落行为[J]. 金属学报, 2021, 57(8): 1039-1047.
[2] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[3] 俞峰,陈兴品,徐海峰,董瀚,翁宇庆,曹文全. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向[J]. 金属学报, 2020, 56(4): 513-522.
[4] 刘宏基, 孙俊杰, 江涛, 郭生武, 柳永宁, 林鑫. 一种超高碳钢的滚动接触疲劳研究[J]. 金属学报, 2014, 50(12): 1446-1452.
[5] 窦鹏; 李友国; 梁开明 . 中碳贝氏体支承辊钢低应力牵引滚动接触下的疲劳短裂纹行为[J]. 金属学报, 2005, 41(2): 140-144 .