Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 923-928     
  论文 本期目录 | 过刊浏览 |
Cu-13.5%Sn合金雾化液滴凝固过程模拟
王晓峰 赵九洲 何 杰 王江涛
中国科学院金属研究所;沈阳 110016
MODELING OF SOLIDIFICATION PROCESS OF THE GAS-ATOMIZED Cu-13.5%Sn ALLOY DROPLETS
WANG Xiaofeng; ZHAO Jiuzhou; He Jie; WANG Jiangtao
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

王晓峰; 赵九洲; 何杰; 王江涛 . Cu-13.5%Sn合金雾化液滴凝固过程模拟[J]. 金属学报, 2005, 41(9): 923-928 .
, , , . MODELING OF SOLIDIFICATION PROCESS OF THE GAS-ATOMIZED Cu-13.5%Sn ALLOY DROPLETS[J]. Acta Metall Sin, 2005, 41(9): 923-928 .

全文: PDF(231 KB)  
摘要: 在群体动力学的基础上,提出了描述Cu-13.5%Sn(质量分数)合金雾化液滴凝固过程的动力学模型; 并将其与液滴的传热方程和运动方程相耦合,对雾化液滴的冷却凝固过程进行了模拟分析,探讨了液滴尺寸、气体初始速度、熔体过热度和初生相与异质形核基底间润湿角对液滴凝固行为的影响. 模拟结果表明:本模型能够很好地描述雾化液滴的凝固过程; 液滴冷却至一定温度开始形核,随后晶粒长大;液滴直径越小,冷却速度越快,液滴内晶粒数量密度就越高,凝固结束时晶粒亦越细小. 形核润湿角和熔体过热度的增加,导致液滴内晶粒数量密度降低,晶粒半径增大; 而气体初始速度的增加,有利于液滴内晶粒细化.
关键词 Cu-13.5%Sn合金喷射成形群体动力学    
Abstract:Based on the population dynamic method a model has been developed to describe the solidification process and the thermal histories of gas-atomized droplets. The model is coupled with the droplets' heat transfer controlling equation and the droplets' motion controlling equation, and used in Cu-13.5%Sn (mass fraction) alloy. The effects of the droplet size, the initial gas velocity, the superheat of the melt and the wetting angle between the primary phase and the catalyzing substrate for heterogeneous nucleation on droplet solidification behaviors were discussed.
Key wordsCu-13.5%Sn alloy    spray forming    population dynamics
收稿日期: 2005-03-24     
ZTFLH:  TG244,TB115  
[1] Singer A R E. Mater Sci Eng, 1991; A135: 246
[2] Grant P S. Prog Mater Sci, 1995; 39: 497
[3] Fan H B, Cao F Y, Cui C S, Jiang Z L, Li Q C. Chin J Nonferrous Met, 1998; 8: 431 (范洪波,曹福洋,崔成松,蒋祖龄,李庆春.中国有色金属学 报,1998;8:431)
[4] Zhang J S, Liu X J, Cui H, Duan X J, Sun Z Q, Chen G L. Metall Mater Trans, 1997; 28A: 1261
[5] Yang L, Chen L J, Liu Z, Zhao J Z, Zhang Y C, Ye H Q. J Mater Sci Lett, 2003; 22: 45
[6] Xiong B Q, Zhang Y A, Lin Y J, Zhang S M, Shi L K. Trans Nonferrous Met Soc Chin, 1999; 9: 302
[7] Liu Y, Guo S, Liu Z M, Du Y, Huang B Y, Huang J S, Chen S Q, Liu F X. Z Metallkd, 2005; 96: 83
[8] Kim H J, Lee J K, Shin S Y, Jeong H G, Kim D H, Bae J C. Intermatallics, 2004; 12: 1109
[9] Zambon A, Bedpan B. Mater Sci Eng, 2004; A375: 638
[10] Kiminami C S, Basim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. Adv Powder Technol Ⅱ: Key Eng Mater, 2001; 189(1): 503
[11] Afonso C R M, Bolfarini C, Kiminami C S, Bassim N D, Kaufman M J, Amateau M F, Eden T J, Galbraith J M. J Non-Cryst Solids, 2001; 284: 134
[12] Golumbfskie W J, Amateau M F, Eden T J, Wang J G, Liu Z K. Acta Mater, 2003; 51: 5199
[13] Liu D M, Zhao J Z, Ye H Q. Acta Metall Sin, 2004; 40: 873 (刘东明,赵九洲,叶恒强.金属学报,2004;40:873)
[14] Grant P S, Cantor B, Katgerman L. Acta Metall Mater, 1993; 41: 3097
[15] Liu D M, Zhao J Z, Ye H Q. Acta Metall Sin, 2003; 39: 375 (刘东明,赵九洲,叶恒强.金属学报, 2003;39:375)
[16] Xu Q, Lavernia E J. Acta Mater, 2001; 49: 3849
[17] Cantor B, Baik K H, Grant P S. Prog Mater Sci,1997; 42: 373
[18] Mathur P, Apelian D, Lawley A. Acta Metall, 1989; 37: 429
[19] Seok H K, Lee H C, Oh K H, Lee J C, Lee H I, Ra H Y. Mater Trans, 2000; 31A: 1479
[20] Fu X W, Zhang J S, Sun Z Q. Acta Metall Sin, 1999; 35: 147 (傅晓伟,张济山,孙祖庆.金属学报, 1999;35:147)
[21] Cai W D, Lavernia E J. Metall Mater Trans, 1998; 29B: 1085
[22] Liu D M, Zhao J Z, Ye H Q. Mater Sci Eng, 2004; A372: 229
[23] Zhao J Z, Drees S, Ratke L. Mater Sci Eng, 2000; A282: 262
[24] Zhao J Z, Ratke L, Feuerbacher B. Modell Simul Mater Sci Eng, 1998; 6: 123
[25] Porter D A, Easterling K E. Phase Transformations in Metals and Alloys. New York: Van Nostrand Reinhold ComDanv, 1981: 193
[26] Liu B C, Jing T. Numerical Simulation and Quality Control for Casting Engineering. Beijing: China Machine Press, 2001: 167 (柳百成,荆 涛.铸造工程的模拟仿真与质量控制.北京:机 械工业出版社,2001:167)
[27] Ranz W E, Marshall W R. Chem Eng Prog, 1952; 48: 141, 173
[28] Lu Q Q, Fontain J R, Aubertin G. Int J Heat Mass Transfer, 1993; 36: 79
[29] Clif R, Grace J R, Weber M E. Bubbles, Drops and Particles. New York: Academic Press, 1978: 111
[30] Tiedje N, Hansen P N, Pedersen A S. Metall Mater Trans, 1996; 27A: 4085
[31] Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw-Hill, 1980: 59
[32] Massalski T B. Binary Alloy Phase Diagrams. 2nd ed., Materials Park, Ohio: ASM International, 1990: 14
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[3] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[4] 田甜, 郝志博, 贾崇林, 葛昌纯. 新型第三代粉末高温合金FGH100L的显微组织与力学性能[J]. 金属学报, 2019, 55(10): 1260-1272.
[5] 张金祥, 黄进峰, 王和斌, 卢林, 崔华, 张济山. 喷射成形H13钢的组织与力学性能*[J]. 金属学报, 2014, 50(7): 787-794.
[6] 苏睿明, 曲迎东, 李荣德. 喷射态7075合金回归再时效中预时效的研究*[J]. 金属学报, 2014, 50(7): 863-870.
[7] 王和斌, 侯陇刚, 张金祥, 卢林, 于一鹏, 崔华, 张济山. 喷射成形含铌M3型高速钢组织与性能研究[J]. 金属学报, 2014, 50(12): 1421-1428.
[8] 袁浩,樊俊飞,任三兵,王浩伟,张亦杰. 喷射沉积锭坯的三维成形过程数值模拟与工艺研究[J]. 金属学报, 2013, 49(12): 1532-1542.
[9] 徐轶,黄鹏,舒琴,郭彪,孙传水. 喷射成形FGH4095高温合金近等温锻造组织特征及性能[J]. 金属学报, 2013, 49(11): 1399-1405.
[10] 于一鹏 黄进峰 崔华 蔡元华 张济山. Nb对喷射成形M3型高速钢组织和性能的影响[J]. 金属学报, 2012, 48(8): 935-940.
[11] 蔡元华 梁瑞光 苏占培 张济山 . 喷射成形Al-22Si-5Fe合金的热变形行为及组织稳定性[J]. 金属学报, 2010, 46(7): 814-820.
[12] 董亭义 杨滨 何建平 张勇. 喷射成形大尺寸镧基块体非晶过冷液相区内的塑性变形行为[J]. 金属学报, 2009, 45(2): 232-236.
[13] 董亭义; 杨滨; 何建平; 张勇 . 气雾化和喷射成形制备大尺寸La62Al15.7(Cu, Ni)22.3非晶合金[J]. 金属学报, 2008, 44(6): 659-664 .
[14] 刘志光; 柴丽华; 陈玉勇; 孔凡涛 . 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44(5): 569-573 .
[15] 康福伟; 孙剑飞; 张国庆; 李周; 沈军 . 喷射成形镍基高温合金热变形特性及微观组织变化[J]. 金属学报, 2007, 43(10): 1053-1058 .