Please wait a minute...
金属学报  2004, Vol. 40 Issue (2): 163-167     
  论文 本期目录 | 过刊浏览 |
20SiMn低合金钢在不同砂粒粒径的多相流中的损伤行为
姜胜利;郑玉贵;姚治铭
中国科学院金属研究所金属腐蚀与防护国家重点实验室; 沈阳 110016
Damage Behavior of 20SiMn Low Alloy Steel in Slurry with Different Particle Sizes
JIANG Shengli; ZHENG Yugui; YAO Zhiming
State Key Laboratory for Corrosion and Protection; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

姜胜利; 郑玉贵; 姚治铭 . 20SiMn低合金钢在不同砂粒粒径的多相流中的损伤行为[J]. 金属学报, 2004, 40(2): 163-167 .
, , . Damage Behavior of 20SiMn Low Alloy Steel in Slurry with Different Particle Sizes[J]. Acta Metall Sin, 2004, 40(2): 163-167 .

全文: PDF(9799 KB)  
摘要: 利用旋转圆盘仪对20SiMn低合金钢在6种砂粒粒径下的多相流损伤进行了研究. 结果表明, 失重随粒径变化有明显的转折点; 大粒径下空蚀的存在对失重有显著的影响, 而小粒径影响很小. 小粒径和大粒径下材料的损伤形貌差别很大. 分析表明, 粒径的变化引起了材料损伤机制的变化. 小粒径时为选择性冲蚀破坏机制, 大粒径时为犁削破坏机制.
关键词 泥浆 冲刷磨损 空蚀    
Abstract:The damage mechanism of 20SiMn low alloy steel in slurry with different particle sizes was studied using a rotating disk system. The results indicate that the curve of mass loss $vs$ particle size exhibits a clear transition point beyond which the mass loss increases sharply. The SEM images of specimens suffering erosion and cavitation of big particles are obviously different from those of small particles. The damage mechanisms under conditions of small particle and big particle are selective erosion of relative soft ferrite phase and ploughing, respectively. Cavitation adds little effect to slurry erosion under condition of small particles, and obvious effect under condition of big particles.
Key wordsslurry    erosion    cavitation erosion
收稿日期: 2003-02-17     
ZTFLH:  TG115.58  
[1] Sundararajan G. Wear, 1991; 145: 251
[2] Stephenson D J, Nicholls J R. Wear, 1995; 186-187: 284
[3] Stack M M, Bray L. Wear, 1995; 186: 273
[4] Lim S C, Ashby M F, Brunton J H. Acta Metall, 1987; 35: 1343
[5] Vincent L. In: Waterhouse R B, Lindley T C, eds., Proc, Fretting Fatigue, ESIS 18, London: Mechanical Engineering Publications, 1994: 323
[6] Stack M M, Corlett N, Zhou S. Wear, 1997; 203-204: 474
[7] Tang Y Y, In: Gu S H, ed., Abrasion and Cavitation in Hydraulic Machinery, Tianjin: Research Center on Abrasion and Cavitation in Hydraulic Machinery, 1993: 196(唐有一.见:顾四行编,水机磨蚀,天津:水机磨蚀试验研究中心,1993:196)
[8] Yu K Q. In: Gu S H, ed., Abrasion and Cavitation in Hydraulic Machinery, Tianjin: Research Center on Abrasion and Cavitation in Hydraulic Machinery. 1993: 1. (于开泉.见:顾四行编,水机磨蚀,天津:水机磨蚀试验研究中心,1993:1)
[9] Gu S H. J Hydroelectr Eng, 1991; (2) : 31(顾四行.水力发电学报,1991;(2) :31)
[10] Levy A V, Hickey G. Wear, 1987; 117: 129
[11] Turenne S, Chatigny Y, Simard D, Caron S, Masounave J. Wear, 1990; 141: 147
[12] Lynn R S, Wong K K, Clark H M. Wear, 1991; 149: 55
[13] Turenne S, Fiset M. Wear, 1993; 162-164: 679
[14] Clark H M, Wong K K. Wear, 1995; 186-187: 454
[15] Stack M M, Pungwiwat N. Wear, 1998; 215: 67
[16] Stack M M, Pungwiwat N. Mater Sci Technol, 1999; 15: 337
[17] Clark H M, Hartwich R B. Wear, 2001; 248: 147
[18] Luo S Z, Zheng Y G, Li J, Ke W. Wear, 2001; 249: 733
[19] Luo S Z, Zheng Y G, Li M C, Yao Z M, Ke W. Corrosion, 2003; 59: 597
[20] Huang J T. Theory and Application of Cavitation and Cavitation Erosion. Beijing: Tsinghua University Press, 1991: 58(黄继汤.空化与空蚀的原理及应用.北京:清华大学出版社,1991:58)
[1] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[2] 乔岩欣,王硕,刘彬,郑玉贵,李花兵,姜周华. 新型高氮钢的腐蚀和空蚀交互作用研究*[J]. 金属学报, 2016, 52(2): 233-240.
[3] 刘诗汉 陈大融. 双相钢空蚀破坏的力学机制[J]. 金属学报, 2009, 45(5): 519-526.
[4] 张红 齐慧滨 杜翠薇 李晓刚. 湿热环境中碱性泥浆附着下镀锌钢板的腐蚀行为[J]. 金属学报, 2009, 45(3): 338-344.
[5] 王再友; 朱金华 . 亚稳奥氏体金属抗空蚀性能及其主要控制因素[J]. 金属学报, 2003, 39(3): 273-277 .
[6] 柳伟; 郑玉贵; 刘常升; 姚治铭; 柯伟 . Cr-Mn-N奥氏体-铁素体不锈钢的空蚀行为[J]. 金属学报, 2003, 39(1): 85-88 .
[7] 国旭明; 郑玉贵; 姚治铭 . CrMnB堆焊合金抗空蚀和冲刷磨损性能的研究[J]. 金属学报, 2002, 38(9): 936-940 .
[8] 柳伟; 郑玉贵; 饶光斌; 姚治铭; 柯伟 . 相变伪弹性对NiTi合金多相流损伤的影响[J]. 金属学报, 2002, 38(2): 185-188 .
[9] 柳伟; 郑玉贵; 姚治铭; 吴欣强; 柯伟 . 清水和含沙水中20SiMn和0Cr13Ni5Mo钢的空蚀行为[J]. 金属学报, 2001, 37(2): 197-201 .