Please wait a minute...
金属学报  2004, Vol. 40 Issue (10): 1055-1063     
  论文 本期目录 | 过刊浏览 |
碳锰含量对低碳锰钢过冷奥氏体形变过程转变动力学的影响
周荣锋 杨王玥 孙祖庆
北京科技大学材料科学与工程学院; 北京100083
Transformation Kinetics of Undercooled Austenite During Deformation of Low Carbon Mn Steels with Different Carbon and Manganese Contents
ZHOU Rongfeng; YANG Wangyue; SUN Zuqing
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

周荣锋; 杨王玥; 孙祖庆 . 碳锰含量对低碳锰钢过冷奥氏体形变过程转变动力学的影响[J]. 金属学报, 2004, 40(10): 1055-1063 .
, , . Transformation Kinetics of Undercooled Austenite During Deformation of Low Carbon Mn Steels with Different Carbon and Manganese Contents[J]. Acta Metall Sin, 2004, 40(10): 1055-1063 .

全文: PDF(97400 KB)  
摘要: 提高低碳锰钢中碳含量, 低碳锰钢形变强化相变孕育期明显延长,转变动力学曲线整体向高应变方向移动。提高锰含量,相变孕育期有所延长,转变动力学过程明显变缓。提高碳、锰含量,钢中铁素体形核率增大,晶粒细小,碳的影响程度比锰显著。过冷奥氏体形变过程铁素体转变分三个阶段,第一阶段符合Cahn的位置饱和机制,第二、三阶段不符合位置饱和机制。
关键词 低碳锰钢形变强化相变转变动力学    
Abstract:The effects of carbon and manganese on the kinetics and the ferrite nucleation of deformation enhanced ferrite transformation DEFT in low carbon Mn steels were investigated. It was found that the addition of carbon prolongs the transformation incubation period dramatically, which retards the ransformation kinetics. However, the ransformationincubation period is somewhat prolonged, and the kinetics becomes much more sluggish as the manganese content increased. The more pronounced refinement is achieved as the carbon or manganese content increased because of the higher nucleation rate, especially in the steels with high carbon content. The process of DEFT in the tested steels can be divided into three stages according to the characteristics of the DEFT kinetics, the first stage obeys Cahn site saturation mechanism, but the other two stages not.
Key wordslow carbon Mn steel    deformation enhanced transformation
收稿日期: 2003-11-13     
ZTFLH:  TG111.2  
[1] Sun Z Q, Yang W Y, Qi J J, Hu A M. Mater Sci Eng A,2002; 334: 201
[2] Qi J J, Yang W Y, Sun Z Q. J Univ Sci Technol Beijing,2002; 24(2) : 97(齐俊杰,杨王玥,孙祖庆.北京科技大学学报,2002;24(2) :97)
[3] Yang W Y, Hu A M, Qi J J, Sun Z Q. Chin J Mater Res, 2001; 15: 171(杨王玥,胡安民,齐俊杰,孙祖庆.材料研究学报,2001;15:171)
[4] Hu A M. Master Thesis, University of Science and Technology Beijing, 2000(胡安民.北京科技大学硕士学位论文.2000)
[5] Qi J J. PhD Thesis, University of Science and Technology Beijing, 2002 (齐俊杰.北京科技大学博士学位论文.2002)
[6] Zhou R F, Yang W Y, Sun Z Q. Acta Metall Sin, in accepted.(周荣锋,杨王玥,孙祖庆.金属学报,已接受)
[7] Zhou R F, Yang W Y, Sun Z Q. Iron Steel, in accepted.(周荣锋,杨王玥,孙祖庆.钢铁,已接受)
[8] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 36: 617(杨平,傅云义,崔风娥,孙祖庆.金属学报,2001;37:617)
[9] Kamat R G, Hawbolt E B, Brown L C, Brimacombe J K.Met Trans A, 1992; 23A: 2469
[10] Leslie W C, Rauch G C. Met Trans A, 1978; 9A: 343
[11] Khlestov V M, Konopleva E V, Mcqueen H J. Can MetallQ, 1998; 26(1) : 64
[12] Hickson M R, Hurley P J, Gibbs R K, Kelly G L, HodgsonP. D. Metall Mater Trans A, 2002; 33A: 1019
[13] Cahn J W. Acta Metall, 1956; 9: 449
[14] Hickson M R, Gibbs R K, Hodgson P D. ISIJ Int, 1999;39: 1176V
[1] 李龙; 丁桦; 杜林秀; 宋红梅; 郑芳 . 仿晶界型铁素体/贝氏体低碳锰钢的组织和力学性能[J]. 金属学报, 2006, 42(11): 1227-1232 .
[2] 徐海卫; 杨王玥; 孙祖庆 . 基于动态相变的细晶双相低碳钢组织控制[J]. 金属学报, 2006, 42(10): 1101-1108 .
[3] 齐俊杰; 杨王玥; 孙祖庆; 章晓中; 董志锋 . 低碳钢SS400形变强化相变组织演变的动力学[J]. 金属学报, 2005, 41(6): 605-610 .
[4] 张旺峰; 朱金华; 曹春晓 . 亚稳态材料的混合物强度法则新模型[J]. 金属学报, 2005, 41(1): 89-.
[5] 杨王玥; 齐俊杰; 孙祖庆; 杨平 . 低碳钢形变强化相变的特征[J]. 金属学报, 2004, 40(2): 135-140 .
[6] 陈国安; 杨王玥; 郭守真; 孙祖庆 . 低碳微量铌钢形变强化相变的组织演变[J]. 金属学报, 2004, 40(10): 1079-1084 .
[7] 周荣锋; 杨王玥; 孙祖庆 . 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变[J]. 金属学报, 2004, 40(1): 1-7 .
[8] 姚可夫; 钱滨; 石伟; 刘春成; 刘庄 . 马氏体回火过程中组织转变量预测的实验研究[J]. 金属学报, 2003, 39(8): 892-896 .
[9] 齐俊杰; 杨王玥; 孙祖庆 . 低碳钢过冷奥氏体形变过程超细铁素体的形成[J]. 金属学报, 2002, 38(9): 897-902 .
[10] 齐俊杰; 杨王玥; 孙祖庆 . 低碳钢过冷奥氏体形变过程中的组织及取向变化[J]. 金属学报, 2002, 38(6): 629-634 .
[11] 杨平; 傅云义; 崔凤娥; 孙祖庆 . Q235碳素钢应变强化相变过程中的动力学问题[J]. 金属学报, 2001, 37(6): 617-624 .
[12] 李超;汪建利;刘金芳. 预转变马氏体对GCr15钢贝氏体转变动力学的影响[J]. 金属学报, 1991, 27(1): 16-19.
[13] 孙恩喜;杨大智;徐祖耀;杨伏明;赵汝文. F6-21Ni-4Mn合金强脉冲磁场诱发马氏体相变的研究[J]. 金属学报, 1990, 26(4): 12-17.