Please wait a minute...
金属学报  1998, Vol. 34 Issue (8): 870-874    
  论文 本期目录 | 过刊浏览 |
磁记录Fe,Co,Ni纳米晶体的熔化温度
蒋青;南胜辉;周明
吉林工业大学材料科学与工程系;长春;130025;吉林工业大学材料科学与工程系;长春;130025;吉林工业大学材料科学与工程系;长春;130025
MELTING TEMPERATURES OF Fe, Co AND Ni MAGNETIC RECORDING NANOCRYSTALS
JIANG Qing; NAN Shenghui; ZHOU Ming (Department of Materials Science and Engineering; Jilin University of Technology; Changchun 130025)Correspondent: JIANG Qing; professon Tel: (431)5687607; Fax: (431)5683397;E-mail: jiangq post jut edu.cn
引用本文:

蒋青;南胜辉;周明. 磁记录Fe,Co,Ni纳米晶体的熔化温度[J]. 金属学报, 1998, 34(8): 870-874.
, , . MELTING TEMPERATURES OF Fe, Co AND Ni MAGNETIC RECORDING NANOCRYSTALS[J]. Acta Metall Sin, 1998, 34(8): 870-874.

全文: PDF(419 KB)  
摘要: 本文提出了一个无自由参数的晶体熔化温度随尺寸变化的模型.模型指出纳米金属晶体的熔化温度随着纳米晶的尺寸的减小而降低.当纳米尺寸达到其最小值时,熔化温度达到最低并伴随着熔化熵的消失.该模型对In,Pb纳米粒子和铁薄膜的熔化温度的理论预测与实验结果一致.在此基础上,预测了Fe,Co和Ni等纳米粒子磁记录材料的熔化温度
关键词 磁记录纳米粒子粒子半径熔化熵熔化温度    
Abstract:A model without any adjustable parameters, describing the dependence of melting temperature on grain size, was established. It is demonstrated that melting temperature of metallic nanocrystals decreases as its size decreases. When the size of nanocrystals reaches its minimum, the melting temperature of the nanocrystals reaches its lowest value and the corresponding melting entropy is zero. With this model, the calculated melting temperatures of in and Pb nanocrystals and Fe thin film are in correspondence with the experimental results. The melting temperatures of magnetic recording nanocrystals of Fe, Co and Ni elements are predicted.
Key wordsmagnetic recording nanocrystal    radius of nanocrystal    melting entropy    melting temperature
收稿日期: 1998-08-18     
基金资助:国家自然科学基金!59671010;;中国科学院金属研究所快速凝固非平衡合金国家重点实验室资助
1 Saito Y, Yoshikawa T, Okuda M, Fujimoto N, Yamamuro S, Wakoh K, Sumiyama K, Suzuki K, Kasuya A,Nishina Y. Chem Phys Lett, 1993; 212: 379
2 Saito Y, Yoshikawa T, Okuda M, Fujimoto N, J Appl Phys, 1994; 75: 134
3 Klabunde K J, Zhang D, Glavee G N, Sorensen C M. Chem Mater 1994; 6: 784
4 Shi F G. J Mater Res, 1994; 9: 1307
5 Jiang Q, Aya N, Shi F G. Appl Phys, 1997; 64A: 627
6 Skripov V R, Koverda V P, SkokoV V N. Phys Status Solidi 1981; 66A: 109
7 Bourdelle K K, Johansen A, Johnson E, Sarholt-Kristensen L. Mater Sci Forum 1995; 179-181: 659
8 Thoft N B, Bohr J, Buras B, Johnson E, Jobansen A. J Phys, 1995; 28D: 539
9 Dybkjaer G, Kruse N, Johansen A, Johnson E, Sarholt-Kristensen L, Bourdelle K K. Surf Coat Technol 1996; 83: 82
10 Goldstein A N. Appl Phys, 1996; 62A: 3311 Sheng H W, ffen G, Peng L M, Hu Z Q, Lu K. PhUo8 Mag Lett, 1996; 73: 17912 Sheng H W, Ren G Peng L M, Hu Z Q, Lu K. J Mote f Rea, 1997; 12: 11913 Lai S L, Guo J Y, Petrova V, Ramanath G, Allen L H. PhW Rev Lett, 1996; 77: 9914 Childre88 J R, Chien C L, Zhou M Y, Sheng P. PhVs Rev, 1991; 44B: 11 68915 Jiang Q, Tong H Y, Hsu D T, 0kuyaIna K, Shi F G. Thin Solid Fifor 1997; 312: 35716 Jiang Q, Shi F G. i Mater Sci TeChno(1998; 14: 17117 Mitch M G, Chase S J, F0ttner J, Yu R Q, Lannin J S. PhVs Rev Lett, 1991; 67: 87518 King H W. In: Calln R W ed., Phpoicol Metalluny, New YOrk: North-Holland Publishing, 197O: 6O19 Lijima S. Nature, 1991; 354: 56
20 Ajayan P M, Lijima S. Nature, 1993; 361: 233
21 Mott N F. Proc R Soc London, 1934; 146A: 465
22 Regl A R, Glazov V M. Semiconductors, 1995; 29(5): 405
23 Lam N Q, Okamoto P R. Mater Res Bull 1994; 19(7): 41
24 Jiang Q, Zhao M, Xu X Y. Philos Mog, 1997; 76B: 1
25 Periodic Table of the Elements. Illinois: Sargent-Welch Scientific Company 1979
[1] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.