Please wait a minute...
金属学报  1998, Vol. 34 Issue (1): 100-106    
  论文 本期目录 | 过刊浏览 |
铝熔体中原位反应生成TiB_2颗粒的机制
杨滨;王玉庆;周本濂
中国科学院金属研究所;沈阳;110015;南昌大学机械电子工程系;南昌;330029;中国科学院金属研究所;沈阳;110015;中国科学院金属研究所;沈阳;110015;中国科学院国际材料物理中心;;沈阳;110015
ANALYSIS OF THE FORMATION MECHANISM OF TiB_2 PARTICULATE FABRICATED BY IN SITU REACTION IN MOLTEN ALUMINIUM
YANG Bin; WANG Yuqing;ZHOU Benlian (Institute of Metal Research; The Chinese Academy of Sciences;Shenyang 110015)(Department of Mechanical and Electronic Engineering; Nanchang University; Nanchang 33002)(International Center for Materials Physics; The Chinese Academy of Sciences; Shenyang 110015)
引用本文:

杨滨;王玉庆;周本濂. 铝熔体中原位反应生成TiB_2颗粒的机制[J]. 金属学报, 1998, 34(1): 100-106.
, , . ANALYSIS OF THE FORMATION MECHANISM OF TiB_2 PARTICULATE FABRICATED BY IN SITU REACTION IN MOLTEN ALUMINIUM[J]. Acta Metall Sin, 1998, 34(1): 100-106.

全文: PDF(1907 KB)  
摘要: 借助X射线衍射(XRD)和扫描电镜(SEM)分析了铝熔体中原位反应生成TIB2颗粒的机制结果表明:(1)形成Al3Ti放出的热量是引发后续TiB2反应的原因之一;(2)在铝熔体中原位反应生成TiB2颗粒时存在扩散机制和溶解-析出机制;(3)理论计算和实验结果都表明预制块中的Al含量显著影响TiB2颗粒的生成机制,当Al的摩尔分数大于43.5%时,反应过程中TiB2颗粒按扩散机制生成,颗粒近似呈球形当Al的摩尔分数小于43.5%时,部分TiB2颗粒按溶解-析出机制生成,颗粒呈方形或多边形在方形和多边形TiB2颗粒上观察到了明显的生长台阶
关键词 TiB_2/Al复合材料原位反应TiB_2颗粒生成机制    
Abstract:By making use of a technique in which TiB2 particulates are formed by an in situ reaction in molten aluminium, TiB2/Al composites have been fabricated. The formation mechanism of TiB2 particulate was studied with XRD and SEM. The results show that (1) the heat generated by the reaction 3Al1+Tis→Al3Ti is one of reasons for igniting the reactions Al3Ti+2B→ 3Al+TiB2 and Ti+2B →TiB2, (2) diffusion, solution-precipitation mechanisms occur during this process and (3) both theoretical and experimental results have shown that the effect of aluminium content in the preform on the formation mechanism of TiB2 particulate is much obvious. When the mole fraction of aluminium in the preform exceeds 43.5%, TiB2 particulates are formed by a diffusion mechanism, and the morphology of the particulates is approximately spherical. A part of TiB2 particulates is formed by a solution-precipitation mechanism when the mole fraction of aluminium is lower than 43.5%, and the TiB2 particulates have grown up to square and multilateral shape. A number of square and multilateral TiB2 particulates with growing steps have been clearly observed with SEM.
Key wordsTiB_2/Al composite    in situ reaction    TiB_2 particulate    formation mechanism
收稿日期: 1998-01-18     
基金资助:国家自然科学基金!59431040;;江西省自然科学基金!975018
1 Premkumar M K,Chu N G、Metall Trans,1993;24A:2359
2 Chu M G.Premkumar M K Metall Trans,1993; 24A:2803
3 王自东、李庆春.李春玉,张录山,于桂复.金属学报,1994;30:B39(Wang Zidong,Li Qingchun, Li Chunyu, Zhang Lushan, Yu Guifu.Acta Metall Sin 1994;30: B39)
4 梁英教,车荫昌.无机物热力学数据手册沈阳:东北大学出版社,1994:383(Liang Yingjiao,Che Yinchang.Inorganic Substances Thermodynamic Data Handbook.Shenyang:Northeastern University Press,1994:383)
5 Barin I,Knache O.Thermochemical Properties of Inorganic Substances.New york:Springer-verlag Berlin Heidelberg, 1973:792
6 Atoda T,Higashi I,Kobavashi M.Sci Pap Inst Phys Chem Res, 1967;61:92
7 Dunand D C Materials and Manufacturing Processes. 1995;10:373
8 傅正义.袁润章. Munir Z A.硅酸盐学报,1993 6: 541(Fu Zhengyi, Yuan Runzhang, Munir Z A.J Chin Ceram Soc,1993; 6:541)
9 Ross R B.Metallic Materials Specification Handbook London: E & F.N.Spon LTD,1972:3
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[3] 任建强, 梁淑华, 姜伊辉, 杜翔. 原位(TiB2-TiB)/Cu复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 126-132.
[4] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[5] 卓海鸥 唐建成 叶楠. 液相原位反应法制备Cu-Y2O3复合材料[J]. 金属学报, 2012, 48(12): 1474-1478.
[6] 杨滨; 王锋; 段先进; 张济山; 陈国香 . 熔铸-原位反应喷射成形7075/TiC复合材料的拉伸性能[J]. 金属学报, 2001, 37(3): 311-314 .
[7] 张来启; 孙祖庆; 张跃; 杨王玥; 陈光南 . 原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能[J]. 金属学报, 2001, 37(3): 325-331 .
[8] 吕维洁; 卞玉君 . 原位合成TiB/Ti基复合材料增强体的生长机制[J]. 金属学报, 2000, 36(1): 104-108 .
[9] 严有为; 魏伯康; 傅正义; 林汉同; 袁润章 . Fe-Ti-C熔体中TiC颗粒的原位合成及长大过程研究[J]. 金属学报, 1999, 35(9): 909-912 .
[10] 李建林; 江东亮; 谭寿洪 . 原位生成SiC/TiSi2纳米复合材料的显微结构[J]. 金属学报, 1999, 35(8): 893-896 .
[11] 吕维洁; 卞玉君; 张小农; 张荻; 方平伟; 吴人洁 . 原位合成TiC/Ti基复合材料增强体的生长机制[J]. 金属学报, 1999, 35(5): 536-540 .
[12] 严有为; 魏伯康; 傅正义; 林汉同; 袁润章 . 原位TiC颗粒增强铁基复合材料及其组织形成机理[J]. 金属学报, 1999, 35(10): 1117-1120 .
[13] 崔春翔;吴人洁;杨春生. 自生TiC_w-AlN_p/Al复合材料中TiC_w相的形成和分布[J]. 金属学报, 1996, 32(3): 323-327.
[14] 华文君;王执锐;张继荣. TiB_2颗粒增强ZA-8锌合金的显微组织与疲劳裂纹扩展行为的关系[J]. 金属学报, 1996, 32(3): 254-260.
[15] 崔春翔;吴人洁. 原位AlN-TiC粒子增强铝基复合材料[J]. 金属学报, 1996, 32(1): 101-104.