Please wait a minute...
金属学报  1982, Vol. 18 Issue (6): 726-734    
  论文 本期目录 | 过刊浏览 |
用Marx法精确测量内耗和弹性模量时的计算公式
孙宗琦
中国科学院金属研究所
FORMULAE FOR MEASURING INTERNAL FRICTION AND MODULUS BY MARX METHOD
Sun Zongqi (Institute of Metal Research; Academia Sinica; Shenyang)
引用本文:

孙宗琦. 用Marx法精确测量内耗和弹性模量时的计算公式[J]. 金属学报, 1982, 18(6): 726-734.
. FORMULAE FOR MEASURING INTERNAL FRICTION AND MODULUS BY MARX METHOD[J]. Acta Metall Sin, 1982, 18(6): 726-734.

全文: PDF(624 KB)  
摘要: 考虑了组合振子法测量内耗(Q~(-1))和弹性模量时粘结层和支持导线的效应。求解了描述组合振子耦合振动的联立偏微分方程组,得出了试样内耗和弹性模量的精确表达式。粘结层附加内耗与粘结层中应变振幅平方及其内耗乘积成正比。支持导线附加内耗正比于细丝内耗和试样内耗乘积。粘结层一般减小振子共振频率。 解释了小内耗试样测量中观察到的由粘结层流变和开裂所造成的非线性不稳定背景内耗现象,例如多重共振峰、呼吸现象等。 提出了用Marx法准确测量的有效措施。
Abstract:Considering the effects of adhesive layers and filaments supporting the composite resonator on the measurement of the internal friction and modulus, the accurate expressions for the internal friction and elastic modulus have been obtained by solving the partial differential equations of the correlative variations of composite resonators. The additional internal friction due to adhesive layer is proportional to the product of square of amplitude of the strain in the layer and the internal friction of adhesive. The internal friction owing to supporting filaments is found to be proportional to the internal frictions of specimen and of quartz resonator.The non-linear and non-steady internal friction backgrounds caused by flowing and cracking of adhesives observed in the internal friction measurement of low damping specimen were explained. It was also suggested some effective approachs to raise the precision of the measurement of internal friction by Marx method.
收稿日期: 1982-06-18     
1 孙宗琦,金属学报,18(1982) ,293.
2 Marx, J., Rev. Sci. Instrum., 22(1951) , 503.
3 Beshers, D. N., Techniques of Metals Research, Vol. Ⅶ, Part 2, Ed. Bunshah, R. F., Wiley, New York, 1976, p. 618.
4 Cady, W. G., Piezoelectricity, McGraw-Hill, 1946, p. 88.
5 Minorsky, N., Nonlinear Oscillation, Van Nostrand, New York, 1969, p. 375.
6 Robinson, W. H.; Edgar, A., IEEE Trans. Sonics Ultrason., SU-21(1974) , 98.
7 Robinson, W. H.; Carpenter, S. H.; Tallon, J. L., J. Appl. Phys., 45(1974) , 1975.
8 Robinson, W. H., Philos. Mag., 25(1972) , 355.
9 Huber, R. J.; Baker, G. S.; Girrs, P., J. Appl. Phys., 32(1961) , 2488.
10 Baker, G. S.; Carpenter, S. H., Rev. Sci. Instrum., 36(1965) , 29.
11 Devine, S. D.; Robinson, W. H., J. Appl. Phys, 48(1977) , 1437.
12 Simpson, M.; Finlayson, T. R.; Smith, T. F., J. Phys. D11(1978) , 453.
13 Nowick, A. S.; Berry, B. S., Anelastic Relaxation in Crystalline Solids, Academic Press, 1972, p. 431.
14 Schwarz, R. B., Rev. Sci. Instrum., 48(1977) , 111.
15 Tatento, H.; Tanignchi, H., Jpn. J. Appl. Phys., 19(1980) , 175.
16 Wuttig, M.; Suzuki, T., Acta Metall., 27(1979) , 755.
17 Wuttig, M.; Suzuki, T., Scr. Metall., 14(1980) , 229.
18 Ritchie, I. G.; Atrens, A.; Blair, D. G., Internal Friction and Ultrasonic Attenuation in Solids, Ed. Hasiguti, R. R., Uni. Tokyo Press, 1977, p. 637.
No related articles found!