Please wait a minute...
金属学报  2013, Vol. 49 Issue (3): 358-364    DOI: 10.3724/SP.J.1037.2012.00554
  论文 本期目录 | 过刊浏览 |
晶体相场模拟晶界预熔及熔化
卢艳丽,牧虹,侯华欣,陈铮
西北工业大学凝固技术国家重点实验室, 西安 710072
PHASE FIELD CRYSTAL SIMULATION FOR THE PREMELTING AND MELTING OF GRAIN BOUNDARY
LU Yanli, MU Hong, HOU Huaxin, CHEN Zheng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

卢艳丽,牧虹,侯华欣,陈铮. 晶体相场模拟晶界预熔及熔化[J]. 金属学报, 2013, 49(3): 358-364.
LU Yanli, MU Hong, HOU Huaxin, CHEN Zheng. PHASE FIELD CRYSTAL SIMULATION FOR THE PREMELTING AND MELTING OF GRAIN BOUNDARY[J]. Acta Metall Sin, 2013, 49(3): 358-364.

全文: PDF(780 KB)  
摘要: 

利用晶体相场模拟晶界的预熔以及熔化现象, 研究不同取向差角度时, 预熔及熔化的微观 组织形貌,并且采用过剩质量方法定量计算预熔及熔化时晶界处液相薄膜宽度. 研究表明, 在接近熔点时, 晶界处预先出现一层液相薄膜,液相膜的形态与晶界处的取向差角度有关. 当取向差角为大角晶界时, 液相膜沿晶界均匀稳定分布; 当取向差角为小角晶界时,若干由液相区包围的独立位错均匀分布在晶界处, 随着温度逐渐接近熔点, 晶界处发生结构转变: 独立位错两两合并, 原来小的液相区也相应合并成为较大的“液相池”. 这种结构转变不仅出现在预熔时, 而且发生在 过热状态下, 在液相宽度曲线图上表现为宽度“跳跃”性增大. 同时, 晶体相场模型计算得到的临 界润湿角θc为12°, 较Read-Shockley理论所得的数值更接近实际结果.

关键词 晶界预熔化液相薄膜宽度结构转变晶体相场    
Abstract

The presence of grain boundary (GB) premelting can alter macroscopic properties of polycrystalline materials, which lead to catastrophic material failure as exemplified by hot cracking during high temperature processing of metallic alloys. Since the premelting is considered to occur in a very limited region, it is difficult to image and to measure thermodynamic properties of nanoscale width of liquid films. At the microscopic level capturing crystalline details, atomistic modeling techniques such as Monte-Carlo (MC) or molecular dynamics (MD) have been widely adopted, however, these methods can't be used to observe morphology of GB at atomic level. Phase field crystal (PFC) has the advantage of resolving the atomic scale density wave structure of a polycrystalline material, it naturally incorporates elastic and plastic deformations and multiple crystal orientations and can be used to study a host of important material processing phenomena. The GB premelting and melting were investigated by PFC method, microstructure evolution of premelting and melting under different misorientation angles were discussed and the film width of GB was quantitively compute in terms of the excess mass method. The results showed that the liquid film appears as the melting point is approached from below, and the morphologies of liquid film are related to misorientation angle. When misorientation angles are high-angle GB, the liquid film are homogeneous. For low-angle GB, the individual dislocations which are surrounded by liquids are uniform distributed in the GB, as the melting point is approached, structure transition occurs as follows: the dislocations form pairs and the original liquids are also combined a big “liquid pool”. This structure transition not only appears during the period of premelting, but also occurs in the overheated stage, which presents a jump in the film width picture. Critical wetting angle is 12° computed by PFC method, it is more closer to the actual results than the value obtained from the Read-Shockley theory.

Key wordsgrain boundary premelting    liquid film width    microstructure transformation    phase field crystal
收稿日期: 2012-09-27     
基金资助:

国家自然科学基金项目51174168, 51274167, 10902086和51075335以及西北工业大学基础研究基金项目NPU-FFR-JC20120222

作者简介: 卢艳丽, 女, 1975年生, 副教授

[1] Luo J.Crit Rev Solid State Mater Sci, 2007; 32: 67


[2] Straumal B B, Baretzky B.Interface Sci, 2004; 12: 147

[3] Inoko F, Okada T, Muraga T, Nakano Y, Yoshikawa T.Interface Sci, 1997; 4: 263

[4] Alsayed A M, Islam M F, Zhang J, Collings P J, Yodh A G.Science, 2005; 309: 1207

[5] Rappaz M, Jacot A, Boettinger W J.Metall Mater Trans, 2003; 34A: 467

[6] Wang N, Mokadem S, Rappaz M, Kurz W.Acta Mater, 2004; 52: 3173

[7] Suzuki A, Mishin Y.J Mater Sci, 2005; 40: 3155

[8] Olmsted D L, Dorel B, Ari A, Foiles S M, Mark A, Alain K.Phys Rev Lett, 2011; 106: 046101

[9] Luo J, Gupta V K, Yoon D H.Appl Phys Lett, 2005; 87: 231902

[10] Straumal B, Kogtenkova O, Protasova S, Mazilkin A, Zieba P, Czeppe T, Wojewoda-Budka J, Faryna M. Mater Sci Eng, 2008; A495: 126

[11] Keblinski P, Phillpot S R, Wolf D, Gleiter H.Acta Mater, 1997; 41: 631

[12] Tang M, Carter W C, Cannon R M.Phys Rev Lett, 2006; 97: 075502

[13] Kikuchi R, Cahn J W.Phys Rev, 1980; 21: 5

[14] Besold G, Mouritsen O G.Phys Rev, 1994; 50B: 6573

[15] Ramakrishnan T V, Yussouff M.Phys Rev, 1979; 19B: 2775

[16] Elder K R, Katakowski M, Haataja M, Grant M.Phys Rev Lett, 2002; 88: 245701

[17] Elder K R, Grant M.Phys Rev, 2004; 70E: 051605

[18] Goldenfeld N, Athreya B P, Dantzig J A.Phys Rev, 2005; 72E: 020601

[19] Stefanovic P, Haataja M, Provatas N.Phys Rev Lett, 2006; 96: 225504

[20] Berry J, Grant M, Elder K R.Phys Rev, 2006; 73E: 031609

[21] Wu K A, Karma A, Hoyt J J, Asta M.Phys Rev, 2006; 73B: 094101

[22] Wu K A, Karma A.Phys Rev, 2007; 76B: 184107

[23] Elder K R, Provatas N, Berry J, Stefanovic P, Grant M.Phys Rev, 2007; 75B: 064107

[24] Morris J R.Phys Rev, 2002; 66B: 144104

[25] Williams P L, Mishin Y.Acta Mater, 2009; 57: 3786

[26] Von Alfthan S, Kaski K, Sutton A P.Phys Rev, 2007; 76B: 245317

[27] Mellenthin J, Karma A, Plapp M.Phys Rev, 2008; 78B: 184110
[1] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[2] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[3] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
[4] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[5] 高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高. 晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*[J]. 金属学报, 2014, 50(7): 886-896.
[6] 高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 晶界位错运动与位错反应过程的晶体相场模拟*[J]. 金属学报, 2014, 50(1): 110-120.
[7] 杨涛 陈铮 董卫平. 应力诱发双位错组亚晶界湮没的晶体相场模拟[J]. 金属学报, 2011, 47(10): 1301-1306.
[8] 易双萍; 刘让苏 . 液态Al凝固过程的微观结构转变特性[J]. 金属学报, 2000, 36(10): 1030-1032 .
[9] 水嘉鹏;王玉林. 非晶Pd-Cu-Si合金的流变行为[J]. 金属学报, 1996, 32(11): 1215-1220.