Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 401-406    DOI: 10.3724/SP.J.1037.2011.00698
  论文 本期目录 | 过刊浏览 |
Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究
王小勇1,潘涛1,王华2,苏航1,李向阳3,曹兴忠4
1. 钢铁研究总院结构材料研究所, 北京 100081
2. 鞍钢股份有限公司, 鞍山 114021
3. 中国钢研科技集团, 北京 100081
4. 中国科学院高能物理研究所, 北京 100049
INVESTIGATION OF THE TOUGHNESS OF LOW CARBON TEMPERED MARTENSITE IN THE SURFACE OF Ni-Cr-Mo-B ULTRA-HEAVY PLATE STEEL
WANG Xiaoyong1, PAN Tao1, WANG Hua2, SU Hang1,LI Xiangyang3, CAO Xingzhong4
1. Division of Structural Materials, Central Iron and Steel Research Institute, Beijing 100081
2. Angang Steel Company Limited, Anshan 114021
3. China Iron and Steel Research Institute Group, Beijing 100081
4. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
全文: PDF(820 KB)  
摘要: 研究了Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织. 对表面区域不同位置处取样进行了冲击性能测试, 并借助OM, SEM, EBSD, XRD和正电子湮没谱(PAS)等技术手段对马氏体组织及其亚结构进行了研究. 结果表明,实验钢表面韧性异常恶化, 马氏体组织中相对粗大的板条束和板条块以及较高的位错密度是其表面韧性恶化的主要原因.
Abstract:Low carbon tempered martensite structures in the surface of Ni-Cr-Mo-B ultra-heavy plate steel was studied. The toughness at different locations in the surface zone was investigated by impact testing, and the sub-microstructures, such as packets and blocks of the martensite, at different distances (3, 15 and 25 mm) from the surface were observed by OM, SEM and electron backscattered diffraction (EBSD), and the dislocation density were tested by XRD and positron annihilation spectroscopy (PAS). The results indicate that the toughness of the tested steel in the 10 mm from the surface deteriorates sharply, which is mainly due to the bigger packet and block size and higher dislocation density in the tempered martensite.
Key wordsultra-heavy plate steel    EBSD    positron annihilation spectroscopy (PAS)    dislocation density
收稿日期: 2011-11-09     
通讯作者: 潘涛     E-mail: wwxyong2011@126.com
Corresponding author: pantao@nercast.com      E-mail: wwxyong2011@126.com
作者简介: 王小勇, 男, 1984年生, 博士生

引用本文:

王小勇,潘涛,王华,苏航,李向阳,曹兴忠. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究[J]. 金属学报, 2012, 48(4): 401-406.
YU Xiao-Yong, PAN Shou, YU Hua, SU Hang, LI Xiang-Yang, CAO Xin-Zhong. INVESTIGATION OF THE TOUGHNESS OF LOW CARBON TEMPERED MARTENSITE IN THE SURFACE OF Ni-Cr-Mo-B ULTRA-HEAVY PLATE STEEL. Acta Metall Sin, 2012, 48(4): 401-406.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00698      或      https://www.ams.org.cn/CN/Y2012/V48/I4/401

[1] Dong T.  Wide Heavy Plate, 1995; 1(3): 1

    (东涛. 宽厚板, 1995; 1(3): 1)

[2] Tang X S.  Mar Equip Mater Mark, 2010; 1: 10

    (唐学生. 船舶物资与市场, 2010; 1: 10)

[3] Di G B, Liu Z Y, Hao L Q, Liu X H.  Mater Mech Eng, 2008; 32(8): 1

    (狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)

[4] Li R P, Xie Y H, Shu Z.  China Offshore Platform, 2003; 18(3): 1

    (李润培, 谢永和, 舒志. 中国海洋平台, 2003; 18(3): 1)

[5] Chen A Z, Niu J C, Deng W P.  Develop Appl Mater, 2010; 25(1): 9

    (陈爱志, 牛继承, 邓晚平. 材料开发与应用, 2010; 25(1): 9)

[6] Wang R F, Xu K, Xue G.  Hot Work Technol, 2007; 36(16): 43

    (王任甫, 徐科, 薛钢. 热加工工艺, 2007; 36(16): 43)

[7] Luo Z J, Shen J C, Su H, Ding Y H.  Develop Appl Mater, 2009; 24(5): 1

    (罗志俊, 沈俊昶, 苏航, 丁跃华. 材料开发与应用, 2009; 24(5): 1)

[8] Xu Z Y.  Martensite and Martensite Transformation. 2nd Ed.,Beijing: Science Press, 1999: 213

    (徐祖耀. 马氏体与马氏体相变. 第2版, 北京: 科学出版社, 1999: 213)

[9] Tomita Y, Okabayashi K.  Metall Trans, 1986; 176A: 1203

[10] Wang C F, Wang M Q, Shi J, Dong H.  Scr Mater, 2008; 58: 492

[11] Inoue T, Matsuda S, Okamura Y.  Trans JIM, 1970; 11: 36

[12] Luo Z J, Shen J C, Su H, Ding Y H, Yang C F, Zhang Y Q, Ma Y.Trans Mater Heat Treat, 2010; 31(10): 63

     (罗志俊, 沈俊昶, 苏航, 丁跃华, 杨才福, 张永权, 马跃.材料热处理学报, 2010; 31(10): 63)

[13] Park Y K, Waber J T.  Mater Lett, 1985; 3: 181

[14] Shirai Y, Araki H, Mori T, Nakamura W, Sakaki K.  J Alloys Compd,2002; 330-333: 125

[15] Kuramoto E, Tsutsumi T, Ueno K, Ohmura M, Kamimura Y. Comput Mater Sci, 1999; 14: 30

[16] Eldrup M.  J Phys IV, 1995; 5(C1): 93

[17] Mohamed H F M, Kwon J, Kim Y M, Kim W.  Nucl Instrum Methods Phys Res, 2007; 258B: 429

[18] Wu Y C, Zhu Z Y, Itoh Y, Ito Y.  Nucl Tech, 1998; 21: 135

     (吴奕初, 朱梓英, 伊东芳子, 伊藤泰男. 核技术, 1998; 21: 135)

[19] Wang S J, Wu Y C, Chen Z Q, Fang P F, Wang B, Zhang Y X. Applied Positron Spectroscopy. Wuhan: Hubei Science and Technology Press, 2008: 77

     (王少阶, 吴奕初, 陈志权, 方鹏飞, 王波, 张永学.应用正电子谱学.武汉: 湖北科学技术出版社, 2008: 77)

[20] Masumoto I, Suga H.  J Jpn Weld Soc, 1982; 51: 586

     (益本功, 须賀久明. 溶接学会誌, 1982; 51: 586)

[21] Liu Y M.  J Iron Steel Res, 2007; 19(4): 1

     (刘禹门. 钢铁研究学报, 2007; 19(4): 1)

[22] Yong Q L.  Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 37

     (雍岐龙. 钢铁中的第二相. 北京: 冶金工业出版社, 2006: 37)

[23] Mandziej S T.  Mater Sci Eng, 1993; A164: 275

[24] Cottrell A H.  Trans Met Soc AIME, 1958; 212: 192

[25] Cottrell A H.  Fracture. New York: Technology Press MIT and John Wiley, 1959: 20
No related articles found!