Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00332
  本期目录 | 过刊浏览 |
基于机器学习的生物可降解锌合金力学性能预测

郭传平1  石尘尘1  刘 鹏1  高冬芳2  赵洋洋3  乔 阳1

1 济南大学 机械工程学院 济南 250022

2 山东大学第二医院 基础医学研究所 济南 250033

3 山东大学第二医院 创伤骨科 济南 250031

Prediction of mechanical properties of biodegradable zinc alloys based on machine learning

GUO Chuanping1, SHI Chenchen1, LIU Peng1, GAO Dongfang2, ZHAO Yangyang3, QIAO Yang1

1 School of Mechanical Engineering, University of Jinan, Jinan 250022, China

2 Institute of Medical Sciences, Second Hospital of Shandong University, Jinan 250033, China

3 Trauma Orthopedics, Second Hospital of Shandong University, Jinan 250031, China

引用本文:

郭传平 石尘尘 刘鹏 高冬芳 赵洋洋 乔阳. 基于机器学习的生物可降解锌合金力学性能预测[J]. 金属学报, 10.11900/0412.1961.2024.00332.
, , , , , . Prediction of mechanical properties of biodegradable zinc alloys based on machine learning[J]. Acta Metall Sin, 0, (): 0-0.

全文: PDF(2162 KB)  
摘要: 
锌合金作为医用植入材料需具备高强度和一定的硬度以支持骨骼再生。因此,明确满足可降解医用植入器械力学性能的锌合金设计准则具有重要意义。本工作通过实验研究与文献搜集获取了Zn-Mg-Mn合金的力学性能数据,采用面向性能的机器学习(ML)模型,预测了Zn-Mg-Mn合金在不同元素种类与含量、不同合金制备工艺下的抗压屈服强度(CYS)与硬度,进而探究了元素种类与含量对材料微观结构与宏观力学性能的影响规律。本模型基于现有数据集通过对比7种不同ML算法,确定了基于最小近邻(KNN)算法的预测能力最佳(准确率达90%以上)。为进一步验证模型预测的准确性,采用了随机法选取数据集以外的数据与模型结果进行对比分析。同时,应用SHAP值分析方法定量研究了Zn-Mg-Mn合金中2种合金元素、制备工艺与CYS、硬度之间的相关性,发现Mg元素对合金CYS和硬度的影响最大。后续通过微观结构表征分析了单个元素对材料力学性能的影响规律,结果表明元素添加导致的新相(Mg2Zn11,MgZn13)形成对力学性能具有显著影响。最后,根据研究结果提出了Zn-Mg-Mn合金满足医用植入材料的成分配比范围,其中Mg在2.25%~2.50% (质量分数,下同),Mn在2.50%~3.50%时,合金抗压屈服强度和硬度达到植入物标准。
关键词 机器学习锌合金可生物降解粉末冶金力学性能    
Abstract

Recent studies indicate that zinc alloys are preferred in biodegradable metal materials owing to their unique biodegradability and biocompatibility. However, their mechanical properties are relatively insufficient; thus, it is crucial to design zinc alloys that meet the mechanical performance implantation standards required for application in biomedicine. The traditional alloy design method depends on experience and trial and error for low efficiency and high cost. In recent years, the rapid development of artificial intelligence has provided new tools and methods for material science. Machine learning (ML), a subset of artificial intelligence, offers new ideas for material design and prediction. This study obtained the mechanical property data of the Zn Mg Mn alloy through experimental investigation and literature review. A performance-oriented ML model was used to predict the compressive yield strength (CYS) and hardness of the Zn Mg Mn alloy, considering various element types and contents and different alloy preparation processes. Furthermore, the influence of the element types and contents on the microstructure and macroscopic mechanical properties of the material was explored. This model used an existing dataset and compared it with seven different ML algorithms to determine that the k-nearest neighbor algorithm has the best predictive ability, exceeding 90%. To further validate the accuracy of the model prediction, a random method was used to select data beyond the dataset for comparative analysis with the model results. Simultaneously, the Shapley Additive exPlanations was applied to quantitatively examine the correlation between the two alloying elements, the preparation process, the CYS, and the hardness in the Zn Mg Mn alloy. The Mg element was determined to significantly impact the alloy’s CYS and hardness. Finally, the influence of individual elements on the mechanical properties of the materials was analyzed through microstructure characterization; the results showed that the formation of new phases (Mg2Zn11 and MgZn13) due to adding these elements significantly affected the mechanical properties. Based on the research results, this study proposed a composition ratio range for the Zn Mg Mn alloy to satisfy the mechanical performance standards required for medical implant materials. When Mg is between 2.25% and 2.50% (mass fraction, the same below) and Mn is between 2.50% and 3.50%, the CYS and hardness of the alloy comply with the implant standards.

Key wordsmachine learning    zinc alloys    biodegradable    powder metallurgy    mechanical properties
收稿日期: 2024-09-27     
基金资助:山东省自然科学基金项目;山东省自然科学基金项目;国家自然科学基金项目
[1] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[4] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[5] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[6] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[7] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[8] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[9] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[10] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[11] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[12] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[13] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[14] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[15] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.