金属学报, 2024, 60(8): 1150-1154 DOI: 10.11900/0412.1961.2024.00008

研究论文

三方Cr5Te8 的磁结构和反常热膨胀

任卫军,1,2, 安萌1,2, 高飞1,2, 罗小华1, 李昺1,2, 张志东1,2, 王进威3

1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016

2 中国科学技术大学 材料科学与工程学院 沈阳 110016

3 Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia

Magnetic Structure and Abnormal Thermal Expansion of Trigonal Cr5Te8

REN Weijun,1,2, AN Meng1,2, GAO Fei1,2, LUO Xiaohua1, LI Bing1,2, ZHANG Zhidong1,2, WANG Chin-Wei3

1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

3 Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia

通讯作者: 任卫军,wjren@imr.ac.cn,主要从事磁性材料研究

责任编辑: 李海兰

收稿日期: 2024-01-12   修回日期: 2024-01-31  

基金资助: 国家重点研发计划项目(2020YFA0406002)
国家自然科学基金面上项目(52071323)

Corresponding authors: REN Weijun, professor, Tel:(024)23971856, E-mail:wjren@imr.ac.cn

Received: 2024-01-12   Revised: 2024-01-31  

Fund supported: National Key Research and Development Program of China(2020YFA0406002)
National Natural Science Foundation of China(52071323)

作者简介 About authors

任卫军,男,1970年生,研究员,博士

摘要

很多二元Cr-Te化合物具有NiAs结构,其中金属Cr原子出现不同程度的有序缺位。Cr5Te8有三方和单斜2种结构,本工作采用粉末X射线和中子衍射结合Rietveld全谱拟合,确定了用自助溶剂生长的三方Cr5Te8单晶具有P3¯m1晶体结构,点阵参数a = 0.3900 nm,c = 0.5986 nm。粉末中子衍射实验揭示Cr5Te8是磁矩沿c方向的共线铁磁化合物,a方向具有小的负热膨胀,c方向显示正常热膨胀。以最低温3.3 K为参考温度点,在3.3~300 K温度范围内,a方向平均热膨胀系数为-10.7 × 10-6 K-1c方向平均膨胀系数为52.4 × 10-6 K-1。[101]、[302]和[201]取向的Cr5Te8具有近零热膨胀,具备应用前景。Cr5Te8的反常热膨胀与其磁有序没有明显关联,可能与晶格中存在大量的Cr空位有关。

关键词: 粉末中子衍射; 负热膨胀; 磁结构

Abstract

Many binary Cr-Te compounds can be regarded as formed due to varying degrees of ordered vacancies of metal Cr atoms in Cr-Te with the NiAs structure. Among them, Cr5Te8 shows two structures: trigonal and monoclinic. This study determined that Cr5Te8 grown using the self-flux method shows a trigonal P3¯m1 crystal structure with lattice constants a = 0.3900 nm and c = 0.5986 nm, as elucidated through the Rietveld refinement of powder X-ray and neutron diffraction patterns. Neutron powder diffraction experiments reveal its collinear ferromagnetic compound, with Cr magnetic moments oriented along the c axis. In addition, it exhibits low negative thermal expansion along the a direction and normal thermal expansion along the c direction. Within the temperature range of 3.3-300 K, using the lowest temperature of 3.3 K as a reference, the average thermal expansion coefficient of Cr5Te8 is -10.7 × 10-6 and 52.4 × 10-6 K-1 in the a and c directions, respectively. Cr5Te8 crystals oriented along the [101], [302], and [201] directions show near-zero thermal expansion and thus have wide application prospects. The abnormal thermal expansion of Cr5Te8 is apparently unrelated to its magnetic order but may be related to the Cr vacancies in the crystal lattice.

Keywords: neutron powder diffraction; negative thermal expansion; magnetic structure

PDF (1372KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

任卫军, 安萌, 高飞, 罗小华, 李昺, 张志东, 王进威. 三方Cr5Te8 的磁结构和反常热膨胀[J]. 金属学报, 2024, 60(8): 1150-1154 DOI:10.11900/0412.1961.2024.00008

REN Weijun, AN Meng, GAO Fei, LUO Xiaohua, LI Bing, ZHANG Zhidong, WANG Chin-Wei. Magnetic Structure and Abnormal Thermal Expansion of Trigonal Cr5Te8[J]. Acta Metallurgica Sinica, 2024, 60(8): 1150-1154 DOI:10.11900/0412.1961.2024.00008

在Cr-Te二元系中,前期研究多集中在Te含量介于50%~62% (原子分数),主要化合物有Cr7Te8、Cr3Te4、Cr2Te3和Cr5Te8[1~3]。这些化合物通常是铁磁性的,Curie温度介于180~340 K[4~6]。它们都可看作是由具有NiAs结构的CrTe中金属Cr原子出现不同程度的有序缺位而形成。由于制备方法和热处理制度不同,这些化合物还可能有同素异形体,如Cr5Te8具有单斜和三方2种结构[7~14]。Tang等[7]用化学气相沉积加不同的热处理方法制备了单斜和三方2种结构的Cr5Te8纳米片,发现单斜Cr5Te8有巨大的反常Hall电导和反常Hall角。Huang等[8]用中子衍射实验研究了单斜Cr5Te8磁结构,发现在70~180 K具有铁磁性,磁矩方向沿c轴,在70 K以下它是倾斜磁结构,磁矩沿c轴方向是铁磁,沿ab面是反铁磁。三方Cr5Te8不仅有反常Hall效应还有拓扑Hall效应。为了解释拓扑Hall效应的起源,Wang等[9]猜测它具有复杂的标量自旋手性的非共面磁结构。然而,单晶磁化曲线等磁测量结果表明,它可能具有易c的简单铁磁结构[10]。长期以来,三方Cr5Te8的结构存在争议,基本认定其空间群为P3¯m1 (No.164)。主要有小晶胞(模型一)[13]和点阵参数是小晶胞2倍、Cr空位更加无序的大晶胞(模型二)[7,9,10,12] 2种结构模型。最近Fu等[14]用化学气相输运方法生长了三方Cr5Te8单晶,用单晶X射线衍射确定其具有模型一的晶体结构。这个工作有力地证明了模型一结构的存在,但并不能排除用其他方法制备的三方Cr5Te8具有模型二的晶体结构的可能性。本课题组前期[10]采用自助溶剂方法制备了三方Cr5Te8单晶,研究了材料的磁晶各向异性和磁热性能。本工作在此基础上,用全谱拟合X射线粉末衍射(XRD)谱和中子粉末衍射(NPD)谱的方法确定了其晶体结构和磁结构,发现它具有零膨胀和负膨胀等实用潜能,磁结构的确定为解释其反常Hall效应和拓扑Hall效应等磁相关性能提供了重要依据。

1 实验方法

本工作采用Te作为助熔剂生长三方结构的Cr5Te8单晶[10]。具体为:将纯度大于99.9%的Cr和纯度大于99.99%的Te按原子比15∶85混合,先装于Al2O3坩埚中,再密封于真空石英管中。将样品置于马弗炉中,并加热至1273 K,保温6 h,然后以2 K/h的降温速率冷却至803 K,再将样品从马弗炉移至离心机中离心,将单晶样品从液相中分离出来,获得的单晶样品呈片状且具有金属光泽。XRD (D8,CuKα )和NPD实验所用粉末样品由单晶研磨而成。NPD实验(约2 g样品装在直径6 mm的钒样品杆中)在澳大利亚核科学技术组织(ANSTO)的OPAL反应堆中子源上开展。室温(300 K)下,采用Echidna高精度粉末中子谱仪[15]确定晶体结构,波长0.1625 nm。采用Wombat高强度粉末中子谱仪[16]进行变温测量,波长为0.241 nm,温度范围为3.3~300 K,除最低温度3.3 K外,25~300 K每25 K测量一条谱线。用MERLIN Compact场发射扫描电子显微镜(SEM)的电子能量损失谱确定样品成分(原子分数)为:Cr 38.15%,Te 61.85%,成分为Cr4.935Te8或写成Cr1.234Te2,后文在不涉及计算结果时仍简称为Cr5Te8

2 实验结果与讨论

Cr5Te8可形成单斜和三方结构,三方结构还有P3¯m1 (No.164)和P3¯c1 (No.165) 2种空间群[1]。XRD测量结果表明本工作单晶样品符合三方P3¯m1空间群,这个空间群中有前面提到的2种非常相近的结构模型(模型一和模型二)。用这2个模型拟合粉末XRD和高精度NPD来确定Cr5Te8的晶体结构,结果见图12,其中,IobsIcal分别表示实验观测和模型计算强度。拟合得到的点阵参数和误差见表1,其中,Rp为图形方差因子,Rwp为加权图形方差因子,χ2为拟合优度。可见,2个模型拟合效果较好。模型二中,由于Cr空位更加无序,有更多的拟合变量,但不管XRD还是NPD拟合结果,从误差大小看都比模型一略差一些。而且,本实验未观测到模型二中由于对称性更低在2θ为7.4°、13.1°、15.1° (图1插图)、23.9°、25.9°等位置应有的超结构峰。这也是模型二拟合2种衍射误差更大一点的原因。所以,确定模型一为正确的晶体结构模型,模型一和模型二所得结果差别很小,但通过XRD可以分辨。

图1

图1   Cr5Te8室温粉末XRD谱的2个模型精修结果

Fig.1   Powder XRD spectra of Cr5Te8 at room temperature refined with two models (Inset is the partial enlargement of model 2, showing some inconsistencies between the model and the experiment; Iobs, Ical—observed intensity and calculated intensity, respectively)


图2

图2   Cr5Te8室温NPD谱的2个模型精修结果

Fig.2   Neutron powder diffraction (NPD) spectra of Cr5Te8 at room temperature refined with two models


表1   2个模型X射线衍射和中子衍射的精修结果

Table 1  Refinement results of XRD and NPD patterns for two models

Diffraction patternSpace groupa / nmc / nmRp / %Rwp / %χ2
XRDP3¯m10.39000.59892.423.475.21
P3¯m10.78001.19792.703.936.70
NPDP3¯m10.39000.59861.131.421.07
P3¯m10.78011.19721.141.431.09

Note: a, c—lattice parameters; Rp—prefile R factor; Rwp—weighted profile R factor; χ2—discrepancy factor

新窗口打开| 下载CSV


在Wombat高强度谱仪上完成了变温中子衍射研究。图3选放了300、200、100、3.3 K 4条谱线。可以看出,大多数谱线峰位没有明显移位,只有(103)峰随温度的降低右移。随着温度降低到Curie温度240 K以下,磁衍射的贡献导致在300 K没有出现(100)峰,此外大多数衍射峰出现不同程度的加强,其中(101)和(201)峰增强更明显,由于没有更多的新的衍射峰出现,说明磁增殖矢量k为(0, 0, 0)。用Bilbao Crystallographic Server的最大磁空间群MAXMAGN[17]和Fullprof Suite[18]内置的BasIreps进行不可约分析。假设磁性原子Cr1 1a(0, 0, 0)和Cr2 1b(0, 0, 0.5)磁矩m大小相等,考虑m//[001]轴,和在ab面内m//[100],结合Cr1和Cr2磁矩平行(FM)和反平行(AFM)排列共4种情况。图4最下面谱线是3.3 K实验NPD谱减去拟合的背底和核衍射得到的,表示实验磁衍射,上面4条是4种模型计算的磁衍射。发现磁矩m/[001] FM排列时谱线能得到很好的拟合,因此Cr5Te8是一个简单共线铁磁结构,磁矩沿c轴,磁空间群是P3¯m'1 (BNS #164.89)。图5a是拟合好的3.3 K实验NPD谱线,Rp = 2.04%,Rwp = 2.99%,χ2 = 8.95,得到的磁矩为2.0 μB,与本课题组前期用单晶沿易轴c轴方向测得的结果[10]相符,大于Lukoschus等[12]同样用单晶测得的1.75 μB,这可能是因为单晶成分差异所致。Cr5Te8磁结构示意图见图5b

图3

图3   Cr5Te8不同温度NPD谱

Fig.3   Cr5Te8 NPD spectra at different temperatures


图4

图4   Cr5Te8实验磁衍射与4种磁结构模型

Fig.4   Cr5Te8 experimental magnetic contribution and four magnetic-structure models (FM and AFM stand for ferromagnetic and antiferromagnetic order, respectively; IMexp is the experimental intensity of magnetic diffraction)


图5

图5   Cr5Te8 3.3 K NPD谱及其精修结果,及Cr5Te8磁结构示意图

Fig.5   Cr5Te8 NPD spectra at 3.3 K and the refinement (a), and schematic of the magnetic structure of Cr5Te8 (b)


从变温NPD谱拟合得到的晶胞参数和磁矩随温度的变化如图6所示。可以看出,Cr5Te8点阵参数a有小的负膨胀,点阵参数c是正常的热膨胀,以最低温度3.3 K为参考温度,在3.3~300 K之间,a方向平均膨胀系数为-10.7 × 10-6 K-1c方向平均膨胀系数为52.4 × 10-6 K-1。由图6ab中的点阵参数计算的Cr5Te8的(101)、(302)、(201)晶面间距随温度的变化见图7。这些方向的单晶或取向样品有近零的热膨胀,其膨胀系数分别为4.6 × 10-6、-2.9 × 10-6和-6.1 × 10-6 K-1,在3.3~300 K可望有宽温区的零膨胀应用。均质材料中的反常热膨胀有结构和电子2种起源,结构起源是指源于晶格原子势和振动(声子),电子起源是指和电子关联相关,如磁性、铁电、超导、电荷转移材料及其相变产生的反常热膨胀[19~24]。Cr5Te8虽然是一种金属磁性材料[9],但其热膨胀规律在Curie温度前后的顺磁态和铁磁态基本相同,没有可观测到的变化,因此其反常热膨胀应该不是电子起源,而是与其有大量Cr空位的点阵相关,属结构起源。其他有Cr空位的Cr-Te化合物中也有反常热膨胀的报道[25]

图6

图6   Cr5Te8点阵参数ac、a / c比和晶胞体积及Cr磁矩随温度的变化规律

Fig.6   Temperature dependences of Cr5Te8 lattice parameter (TC—Curie temperature)

(a) a (b) c(c) cell volume and a / c (d) Cr moment


图7

图7   Cr5Te8 (101)、(201)、(302)晶面间距随温度的变化

Fig.7   Temperature dependences of interplanar spacing (d) of Cr5Te8 (101), (201), and (302) planes


3 结论

用自助溶剂法生长的Cr5Te8单晶具有三方P3¯m1 (空间群No.164)结构,300 K点阵参数为a = 0.3900 nm, c = 0.5986 nm,其磁空间群为P3¯m'1 (BNS #164.89),是一个易磁化轴沿c轴方向的简单铁磁结构。Cr5Te8a方向是负膨胀,c方向是正膨胀,[101]、[302]和[201]方向的膨胀系数分别仅为4.6 × 10-6、-2.9 × 10-6和-6.1 × 10-6 K-1,这些方向的取向Cr5Te8在3.3~300 K具备零膨胀应用前景。

参考文献

Ipser H, Komarek K L, Klepp K O.

Transition metal-chalcogen systems VIII: The Cr-Te phase diagram

[J]. J. Less-Comon Met., 1983, 92: 265

[本文引用: 2]

Viswanathan R, Sai Baba M, Narasimhan T S L, et al.

Homogeneity ranges and thermodynamic properties of the Te-rich phases in the Cr-Te system

[J]. J. Alloys Compd., 1994, 206: 201

Li Y B, Zhang Y Q, Li W F, et al.

Spin glass-like behavior and electrical transport properties of Cr7(Se1 - x Te x )8 compounds

[J]. Phys. Rev., 2006, 73B: 212403

[本文引用: 1]

Akram M, Nazar F M.

Magnetic properties of CrTe, Cr23Te24, Cr7Te8, Cr5Te6, and Cr3Te4 compounds

[J]. J. Mater. Sci., 1983, 18: 423

[本文引用: 1]

Haraldsen H, Kowalski E.

Magnetochemische untersuchungen. XVII. das magnetische verhalten der chalkogenide des zweiwertigen chroms

[J]. Z. Anorg. Allg. Chem., 1935, 224: 329

Haraldsen H, Neuber A.

Magnetochemische untersuchungen. XX-VII. Magnetische und röntgenographische untersuchungen am system chrom-tellur

[J]. Z. Anorg. Allg. Chem., 1937, 234: 353

[本文引用: 1]

Tang B J, Wang X W, Han M J, et al.

Phase engineering of Cr5Te8 with colossal anomalous Hall effect

[J]. Nat. Electron., 2022, 5: 224

[本文引用: 3]

Huang Z L, Kockelmann W, Telling M, et al.

A neutron diffraction study of structural and magnetic properties of monoclinic Cr5Te8

[J]. Solid State Sci., 2008, 10: 1099

[本文引用: 1]

Wang Y H, Yan J, Li J B, et al.

Magnetic anisotropy and topological Hall effect in the trigonal chromium tellurides Cr5Te8

[J]. Phys. Rev., 2019, 100B: 024434

[本文引用: 3]

Luo X H, Ren W J, Zhang Z D.

Magnetic properties and magnetocaloric effect of a trigonal Te-rich Cr5Te8 single crystal

[J]. J. Magn. Magn. Mater., 2018, 445: 37

[本文引用: 5]

Akram M, Nazar F M.

Magnetic anisotropy of Cr5Te8 single crystal

[J]. J. Mater. Sci. Lett., 1983, 2: 441

Lukoschus K, Kraschinski S, Näther C, et al.

Magnetic properties and low temperature X-ray studies of the weak ferromagnetic monoclinic and trigonal chromium tellurides Cr5Te8

[J]. J. Solid State Chem., 2004, 177: 951

[本文引用: 2]

Hatakeyama K, Kaneko T, Yoshida H, et al.

Pressure effect on the Curie temperatures of Cr1 - δ Te compounds

[J]. J. Magn. Magn. Mater., 1990, 90/91: 175

[本文引用: 1]

Fu B Y, Bao X J, Deng H S, et al.

Redetermination the basic cell trigonal Cr5Te8 single crystal structure and its temperature dependence Raman spectra

[J]. J. Solid State Chem., 2021, 300: 122222

[本文引用: 2]

Avdeev M, Hester J R.

ECHIDNA: A decade of high‐resolution neu-tron powder diffraction at OPAL

[J]. J. Appl. Cryst., 2018, 51: 1597

[本文引用: 1]

Studer A J, Hagen M E, Noakes T J.

Wombat: The high-intensity powder diffractometer at the OPAL reactor

[J]. Physica, 2006, 385-386B: 1013

[本文引用: 1]

Perez-Mato J M, Gallego S V, Tasci E S, et al.

Symmetry-based computational tools for magnetic crystallography

[J]. Annu. Rev. Mater. Res., 2015, 45: 217

[本文引用: 1]

Rodríguez-Carvajal J.

Recent advances in magnetic structure determination by neutron powder diffraction

[J]. Physica, 1993, 192B: 55

[本文引用: 1]

Attfield J P.

Mechanisms and materials for NTE

[J]. Front. Chem., 2018, 6: 371

DOI      PMID      [本文引用: 1]

Negative thermal expansion (NTE) upon heating is an unusual property but is observed in many materials over varying ranges of temperature. A brief review of mechanisms for NTE and prominent materials will be presented here. Broadly there are two basic mechanisms for intrinsic NTE within a homogenous solid; structural and electronic. Structural NTE is driven by transverse vibrational motion in insulating framework-type materials e.g., ZrW2O8 and ScF3. Electronic NTE results from thermal changes in electronic structure or magnetism and is often associated with phase transitions. A classic example is the Invar alloy, Fe0.64Ni0.36, but many exotic mechanisms have been discovered more recently such as colossal NTE driven by Bi-Ni charge transfer in the perovskite BiNiO3. In addition there are several types of NTE that result from specific sample morphologies. Several simple materials, e.g., Au, CuO, are reported to show NTE as nanoparticles but not in the bulk. Microstructural enhancements of NTE can be achieved in ceramics of materials with anisotropic thermal expansion such as beta-eucryptite and Ca2RuO4, and artificial NTE metamaterials can be fabricated from engineered structures of normal (positive) thermal expansion substances.

Evans J S O.

Negative thermal expansion materials

[J]. J. Chem. Soc. Dalton Trans., 1999, 19: 3317

Barrera G D, Bruno J A O, Barron T H K, et al.

Negative thermal expansion

[J]. J. Phys. Conden. Matter, 2005, 17: R217

Song Y Z, Shi N K, Deng S Q, et al.

Negative thermal expansion in magnetic materials

[J]. Prog. Mater. Sci., 2021, 121: 100835

Chen J, Hu L, Deng J X, et al.

Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications

[J]. Chem. Soc. Rev., 2015, 44: 3522

DOI      PMID     

Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a "perfect" NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

Xing Q F, Xing X R, Du L, et al.

Hydrothermal synthesis of negative thermal expansion material ZrW2O8

[J]. Acta Metall. Sin., 2005, 41: 669

[本文引用: 1]

Negative thermal expansion compound ZrW2O8 was successfullysynthesized by hydrothermal method with low temperature heat treatmentat 500 ℃. The XRD result showed that the crystalline precursorZrW2O7 (OH) 2 (H2O) 2 was formed when theconcentration of HCl was equal to or greater than 6 mol/L. Thethermal stability ofthe synthesized ZrW2O8 and its precursorZrW2O7 (OH) 2 (H2O) 2 were studied bythermo-gravimetric analysis (TGA) and differential thermalanalysis (DTA), which confirmed ZrW2O8 could besynthesized through sintering the precursor at low temperature of 500 ℃.Powder X-ray diffraction and FT-IR spectroscopy investigationsconfirmed that the synthesized product is single cubic ZrW2O8 phase.

邢奇凤, 邢献然, 杜 凌 .

水热法合成负热膨胀材料ZrW2O8

[J]. 金属学报, 2005, 41: 669

[本文引用: 1]

采用水热法在500 ℃的低温条件下成功地合成了具有负热膨胀系数的材料ZrW2O8.X射线衍射结果表明, 当加入的盐酸溶液浓度c HCl≥6 mol/L时,可用水热法合成出多晶前驱体ZrW2O7(OH)2(H2O)2. 运用热重-差热分析法研究了前驱体ZrW2O7 (OH)2 (H2O) 2和产物ZrW2O8的热稳定性. 结果表明, 前驱体在较低温度(500 ℃)下灼烧即可获得产物ZrW2O8. 经X射线衍射和红外光谱分析证明,所获得的产物为单一立方相ZrW2O8.

Li C, Liu K, Jiang D Q, et al.

Diverse thermal expansion behaviors in ferromagnetic Cr1 - δ Te with NiAs-type, defective structures

[J]. Inorg. Chem., 2022, 61: 14641

[本文引用: 1]

/