Please wait a minute...
金属学报  2017, Vol. 53 Issue (12): 1636-1644    DOI: 10.11900/0412.1961.2017.00192
  本期目录 | 过刊浏览 |
多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究
丰敏1, 陈明辉2(), 余中狄2, 吕振波1, 朱圣龙3, 王福会2
1 辽宁石油化工大学化学化工与环境学部 抚顺 113001
2 东北大学材料科学与工程学院材料各向异性与织构教育部重点实验室 沈阳 110819
3 中国科学院金属研究所 沈阳 110016
Comparative Study of Thermal Shock Behavior of the Arc Ion Plating NiCrAlY and the Enamel Based Composite Coatings
Min FENG1, Minghui CHEN2(), Zhongdi YU2, Zhenbo LV1, Shenglong ZHU3, Fuhui WANG2
1 Devision of Chemistry, Chemical Engineering and Environment, Liaoning Shihua University, Fushun 113001, China
2 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
引用本文:

丰敏, 陈明辉, 余中狄, 吕振波, 朱圣龙, 王福会. 多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J]. 金属学报, 2017, 53(12): 1636-1644.
Min FENG, Minghui CHEN, Zhongdi YU, Zhenbo LV, Shenglong ZHU, Fuhui WANG. Comparative Study of Thermal Shock Behavior of the Arc Ion Plating NiCrAlY and the Enamel Based Composite Coatings[J]. Acta Metall Sin, 2017, 53(12): 1636-1644.

全文: PDF(6461 KB)   HTML
摘要: 

以K444镍基高温合金为基体,采用多弧离子镀法制备了NiCrAlY涂层、喷涂-烧结法制备了搪瓷基复合涂层,并对比研究了2种涂层的抗热震性能。热震实验高温段温度为900 ℃。高温段保温1.5 h后经水或空气冷却为一个热震循环。结果表明,NiCrAlY涂层的抗热震性能较差。当冷却介质为水时,水淬热震30 cyc后,涂层表面氧化膜开裂明显,且有个别裂纹已穿透氧化膜,扩展至涂层内部;而搪瓷基复合涂层的抗热震性能非常优异。热震后,涂层表面及内部均未发现裂纹,涂层和基体界面结合良好。经分析,其优良的抗热震性能源于:(1) 搪瓷釉热膨胀系数与高温合金基体匹配度高;(2) 纳米Ni和NiCrAlY金属颗粒的加入进一步增大涂层热膨胀系数的同时,还提高了搪瓷的韧塑性。

关键词 NiCrAlY涂层搪瓷涂层热震高温合金    
Abstract

From the view of material point, high-temperature protective coatings are divided into the following two categories: ceramic coating and metallic coating. Metallic coating possesses higher toughness and bond strength to the alloy substrate than ceramic coating does. Its protectiveness relies on the formation of a slow-growing and adherent oxide scale at high temperatures. However, with increasing the oxidation time, the oxide scale will experience cracking and spalling as it has grown to the critical thickness. Ceramic coating due to its chemical inertness has been used in many corrosive environments for protection. But the weak interfacial bond and big mismatch of coefficient of thermal expansion with the alloy substrate limit its application in thermal shock environments. Since glass-ceramics combine the generally superior properties of crystallite ceramics with the easy processing of glasses, it is expected that glass-ceramic coating should show a higher spallation resistance than ceramic one under thermal shock. Cast K444 superalloy is widely used in advanced aircraft engine and gas turbine. Its protection from high-temperature oxidation under thermal shock becomes a critic issue. In this work, NiCrAlY and enamel based composite coatings on the K444 superalloy substrate by arc ion plating and spray-firing methods were prepared, respectively. Thermal shock behavior from 900 ℃ to room temperature of these two coatings was studied comparatively. One cycle of thermal shock contained the holding of samples at 900 ℃ for 1.5 h and the following cooling down in air or water. Results indicated that thermal shock resistance of the NiCrAlY coating was low. As the NiCrAlY coating was thermal shocked by water, its oxide scale cracked severely after 30 cyc, and certain crack had already transported the scale and penetrated into the interior of the underlying metallic coating; for the enamel based composite coating, however, its thermal shock resistance was high. No cracks were detected at the coating surface or interior after thermal shock test. Besides, the enamel coating still adhered well with the alloy substrate. The high resistance to thermal shock of the enamel based composite coating originated from: (1) the coefficient of thermal expansion of the enamel based composite coating matched well with that of the alloy substrate; (2) the addition of nano-sized Ni and NiCrAlY metallic particles improved the toughness of the enamel coating, in addition to enhancing its coefficient of thermal expansion.

Key wordsNiCrAlY coating    enamel coating    thermal shock    superalloy
收稿日期: 2017-05-22     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目No.51471177以及中央高校基本科研业务费专项基金项目No.N160205001
作者简介:

作者简介 丰 敏,女,1991年生,硕士生

图1  K444高温合金、NiCrAlY涂层和搪瓷基复合涂层900 ℃的热震动力学曲线
图2  K444高温合金、NiCrAlY涂层及搪瓷基复合涂层在制备态及分别在水和空气中热震循环30 cyc后的XRD谱
图3  K444高温合金分别在空气和水中热震循环30 cyc后表面和截面的微观形貌
图4  NiCrAlY涂层分别在空气和水中热震循环30 cyc后表面和截面的微观形貌
图5  搪瓷基复合涂层在制备态及分别在空气和水中热震循环30 cyc后表面和截面的微观形貌
[1] Streiff R.Databases and expert systems for high temperature corrosion and coatings[J]. Corros. Sci., 1993, 35: 1177
[2] Peng X, Jiang S M, Sun X D, et al.Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating[J]. Acta Metall. Sin., 2016, 52: 625(彭新, 姜肃猛, 孙旭东等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为[J]. 金属学报, 2016, 52: 625)
[3] Ou M Q, Liu Y, Zha X D, et al.Corrosion behavior of a new nickel base alloy in supercritical water containing diverse ions[J]. Acta Metall. Sin., 2016, 52: 1557(欧美琼, 刘扬, 查向东等. 一种新型镍基合金在超临界多种离子共存环境下的腐蚀行为[J]. 金属学报, 2016, 52: 1557)
[4] Xiong H P, Mao W, Cheng Y Y, et al.The wetting of several high-temperature brazing fillers on SiC ceramic and interfacial bonding[J]. Acta Metall. Sin., 2001, 37: 991(熊华平, 毛唯, 程耀永等. 几种钴基高温钎料对SiC陶瓷的润湿与界面结合[J]. 金属学报, 2001, 37: 991)
[5] Ferré F G, Ormellese M, Di Fonzo F, et al.Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: A preliminary study[J]. Corros. Sci., 2013, 77: 375
[6] Ma?ecka J.Effect of an Al2O3 coating on the oxidation process of a γ-TiAl phase based alloy[J]. Corros. Sci., 2012, 63: 287
[7] Yu D Q, Lu X Y, Ma J, et al.Study of oxidation behavior of the gradient NiCrAlY coating at 1000 and 1100 ℃[J]. Acta Metall. Sin., 2012, 48: 759(于大千, 卢旭阳, 马军等. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究[J]. 金属学报, 2012, 48: 759)
[8] Luo L, Shen Y F, Li B, et al.Preparation and oxidation behavior of alu-minized coating on TC4 titanium alloy via friction stir lap welding method[J]. Acta Metall. Sin., 2013, 49: 996(骆蕾, 沈以赴, 李博等. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为[J]. 金属学报, 2013, 49: 996)
[9] Zhu L J, Zhu S D, Wang F H, et al.Comparison of the cyclic oxidation behavior of a low expansion Ni+CrAlYSiN nanocomposite and a NiCrAlYSi coating[J]. Corros. Sci., 2014, 80: 393
[10] Guo H B, Cui Y J, Peng H, et al.Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy[J]. Corros. Sci., 2010, 52: 1440
[11] Alam M Z, Das D K.Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy[J]. Corros. Sci., 2009, 51: 1405
[12] Tian X J, Wang F H, Li Q F.High temperature oxidation and hot corrosion behavior of enamel/sputtered NiCrAlY composite coating[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 344(田秀娟, 王福会, 李庆芬. 搪瓷/NiCrAlY复合涂层的抗高温氧化及热腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25: 344)
[13] Li H Q, Gong J, Sun C.High temperature oxidation resistance and mechanical properties of NiCrAlY/Al-Al2O3 coatings on an orthorhombic Ti2AlNb alloy[J]. Acta Metall. Sin., 2012, 48: 579(李海庆, 宫骏, 孙超. NiCrAlY/Al-Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48: 579)
[14] Zhang S, Wang Q, Zhao X S, et al.High temperature oxidation behavior of cast Ni-based superalloy K444[J]. J. Shenyang Univ. Technol., 2010, 32: 136(张松, 王琦, 赵小书等. K444铸造镍基高温合金的高温氧化行为[J]. 沈阳工业大学学报, 2010, 32: 136)
[15] Qin X M, Sun X Y, Sun L, et al.Microstructure of a ZrO2-mica diphase glass-ceramic[J]. Acta Metall. Sin., 2003, 39: 145(秦小梅, 孙祥云, 苏雷等. ZrO2-云母复相微晶玻璃的微观组织研究[J]. 金属学报, 2003, 39: 145)
[16] Chen M H, Li W B, Shen M L, et al.Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms[J]. Corros. Sci., 2014, 82: 316
[17] Moskalewicz T, Smeacetto F, Czyrska-Filemonowicz A.Microstructure, properties and oxidation behavior of the glass-ceramic based coating on near-α titanium alloy[J]. Surf. Coat. Technol., 2009, 203: 2249
[18] Chen M H, Li W B, Shen M L, et al.Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microstructure[J]. Corros. Sci., 2013, 74: 178
[19] Li W B, Chen M H, Wu M Y, et al.Microstructure and oxidation behavior of a SiC-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy[J]. Corros. Sci., 2014, 87: 179
[20] Li W B, Zhu S D, Wang C, et al.SiO2-Al2O3-glass composite coating on Ti-6Al-4V alloy: Oxidation and interfacial reaction behavior[J]. Corros. Sci., 2013, 74: 367
[21] Chen M H, Shen M L, Zhu S L, et al.Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 ℃[J]. Corros. Sci., 2013, 73: 331
[22] Shen M L, Zhu S L, Wang F H.Cyclic oxidation behavior of glass-ceramic composite coatings on superalloy K38G at 1100 ℃[J]. Thin Solid Films, 2011, 519: 4884
[23] Chen M H, Shen M L, Zhu S L, et al.Preparation and thermal shock behavior at 1000 ℃ of a glass-alumina-NiCrAlY tri-composite coating on K38G superalloy[J]. Surf. Coat. Technol., 2012, 206: 2566
[24] Chen M H, Zhu S L, Shen M L, et al.Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites[J]. Mater. Sci. Eng., 2011, A528: 1360
[25] Chen M H, Zhu S L, Wang F H.Crystallization behavior of SiO2-Al2O3-ZnO-CaO glass system at 1123-1273 K[J]. J. Am. Ceram. Soc., 2010, 93: 3230
[26] Chen M H.Mechanisms study on thermal shock resistance of particles-reinforced glass coatings [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2011(陈明辉. 颗粒增强改善搪瓷涂层的抗热震性能机制研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[27] Song P, Lu J S, Zhang D F, et al.Effect of La and Hf dopant on the high temperature oxidation of CoNiCrAl alloys[J]. Acta Metall. Sin., 2011, 47: 653(宋鹏, 陆建生, 张德丰等. La和Hf对CoNiCrAl合金涂层高温氧化行为的影响[J]. 金属学报, 2011, 47: 653)
[28] Wang W X, Jiang S M, Wei G Z, et al.Isothermal oxidation behavior of a NiCoCrAlYSiB+AlSiY gradient coating[J]. Acta Metall. Sin., 2011, 47: 578(王维新, 姜肃猛, 卫广智等. NiCoCrAlYSiB+AlSiY梯度涂层恒温氧化行为[J]. 金属学报, 2011, 47: 578)
[29] Li Z W, Gao W, Zhang D L, et al.High temperature oxidation behaviour of a TiAl-Al2O3 intermetallic matrix composite[J]. Corros. Sci., 2004, 46: 1997
[30] Pu S, Wang L, Xie G, et al.Effect of notch orientation and local recrystallization on thermal fatigue properties of a directionally solidified Co-based[J]. Acta Metall. Sin., 2015, 51: 449(濮晟, 王莉, 谢光等. 缺口取向和再结晶对一种定向凝固钴基高温合金热疲劳性能的影响[J]. 金属学报, 2015, 51: 449)
[1] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[13] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.