Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 349-356    DOI: 10.11900/0412.1961.2014.00293
  本期目录 | 过刊浏览 |
BSTMUF601合金的高温蠕变变形机制
孙朝阳1(), 石兵1, 武传标1, 叶乃威2, 马天军3, 徐文亮3, 杨竞1
1 北京科技大学机械工程学院, 北京 100083
2 宁波宝新不锈钢有限公司, 宁波 315807
3 宝山钢铁有限公司特殊钢事业部, 上海 200940
HIGH TEMPERATURE CREEP DEFORMATION MECHANISM OF BSTMUF601 SUPERALLOY
SUN Chaoyang1(), SHI Bing1, WU Chuanbiao1, YE Naiwei2, MA Tianjun3, XU Wenliang3, YANG Jing1
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Ningbo Baoxin Stainless Steel Co. Ltd., Ningbo 315807
3 Special Steel Business Unit, Baoshan Iron & Steel Co. Ltd., Shanghai 200940
引用本文:

孙朝阳, 石兵, 武传标, 叶乃威, 马天军, 徐文亮, 杨竞. BSTMUF601合金的高温蠕变变形机制[J]. 金属学报, 2015, 51(3): 349-356.
Chaoyang SUN, Bing SHI, Chuanbiao WU, Naiwei YE, Tianjun MA, Wenliang XU, Jing YANG. HIGH TEMPERATURE CREEP DEFORMATION MECHANISM OF BSTMUF601 SUPERALLOY[J]. Acta Metall Sin, 2015, 51(3): 349-356.

全文: PDF(3313 KB)   HTML
摘要: 

对BSTMUF601合金在不同温度和应力条件下进行了拉伸蠕变实验, 获得了该合金的高温蠕变的变形规律, 基于此提出了一种新的修正q映射法蠕变本构模型, 该模型考虑了蠕变3阶段的蠕变特点. 模型预测结果与实验结果吻合较好, 平均相对误差为1.86%, 相对于没有考虑第2阶段的θ映射法模型和没有考虑第1阶段的修正q映射法模型相对误差分别减少0.10%和6.02%, 表明该模型具有较强的适用性, 且不降低预测精度. 对蠕变和蠕变断裂试样的位错组态和空洞演化进行了显微分析, 结果表明, 稳态蠕变阶段蠕变应力指数都接近5, 合金主要通过位错攀移越过γ′相的方式变形, 并未观察到层错和微孪晶存在于γ′相或基体中, 蠕变变形机制主要是位错攀移. 空洞在晶界上形核, 长大连接形成裂纹, 在应力集中作用下, 裂纹沿晶界扩展, 最终导致断裂, 蠕变断裂机制主要是晶界断裂.

关键词 BSTMUF601合金蠕变变形稳态蠕变速率蠕变断裂    
Abstract

Muffle tube is the core component in a large bright annealing muffle furnace. A lot of defects will be found on the muffle tube after long-term application under high temperature, self-weight and uneven temperature conditions, and among them creep deformation is serious, directly affecting the usability and life expectancy of muffle tube. High temperature creep and rupture properties are important indicators of the muffle tube material, and BSTMUF601 nickel-based superalloy materials are commonly used in a muffle tube. Because of good oxidation resistance at high temperatures, high strength and good creep resistance, nickel-base superalloy materials are taken seriously especially its creep mechanism. For different alloys or alloys in different conditions, the conclusions about creep mechanism are different. So the research of each alloy is necessary. Creep tests of BSTMUF601 superalloy for elevated temperature were carried out under different temperatures and stresses. The creep deformation characteristic of BSTMUF601 superalloy was investigated based on the creep curves. And then, a creep constitutive model for elevated temperature was proposed by introducing a modified θ projection method, which contained three stages of creep. The predicted results by using the model are in good agreement with the experimental results. The average relative error of the model fitted is 1.86%. Compared with the model ignored the second stage of creep and the model ignored the first stage of creep, the average relative error is reduced 0.10% and 6.02%, respectively. It is indicated that the model will be a wider range of application whereas the prediction precision is not reduced. Dislocation structure and its distribution for creep specimens and void evolution for creep rupture specimens have been carried by analyzing the microscopic structure. The results show that the creep stress index is close to 5 during the steady-state creep stage for different temperatures. The dislocation climb mechanism controlls the creep deformation process. There is no stacking fault or microtwin observed in phase or matrix. Cracks originate from the cavities at grain boundary and along the boundary, which lead to fracture. Grain boundary fracture is the main creep rupture mechanism.

Key wordsBSTMUF601 alloy    creep deformation    steady creep rate    creep rupture
    
ZTFLH:  TG142.1  
基金资助:* 国家自然科学基金项目50831008和51105029及国家科技重大专项项目2014ZX04014-51资助
作者简介: null

孙朝阳, 男, 1976年生, 副教授, 博士

图1  BSTMUF601合金蠕变前后的显微组织
图2  BSTMUF601合金在不同条件下的蠕变曲线和蠕变本构模型拟合结果
图3  BSTMUF601合金在1095 ℃, 应力为7.7 MPa条件下不同模型预测的蠕变曲线与实验结果对比
Creep temperature Creep stress Steady creep rate
MPa 10-2 h-1
1095 5.7 0.00855
1095 6.7 0.02180
1095
980
980
980
7.7
12.4
14.4
16.4
0.03690
0.06800
0.10000
0.25000
870 20.0 0.01300
870 32.0 0.18000
870 40.0 0.45000
表1  BSTMUF601合金在不同条件下的稳态蠕变速率
  BSTMUF601合金的lnεs -lnσ 关系曲线
图5  BSTMUF601合金在1095 ℃, 应力为5.7 MPa条件下蠕变后的TEM像
图6  BSTMUF601合金在870 ℃, 应力为32 MPa条件下蠕变断裂后的OM像
图7  BSTMUF601合金在1095 ℃, 应力为7.7 MPa条件下蠕变试样断口附近纵剖面和横截面的形貌
[1] Ye N W, Yang A, Sun C Y. Metall Equip, 2010; 179(1): 40
[1] (叶乃威, 杨 安, 孙朝阳. 冶金设备, 2010; 179(1): 40)
[2] Inoue T, Tanaka K, Adachi H, Kishida K, Okamoto N L, Inui H, Yokokawa T, Harada H. Acta Mater, 2009; 57: 1078
[3] Raujol S, Pettinari F, Locq D, Caron P, Coujou A, Clément N. Mater Sci Eng, 2004; A387-389: 678
[4] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C, Wang Y, Mills M J. Prog Mater Sci, 2009; 54: 839
[5] Zhang G Y, Guo J T, Zhang H. Chin J Nonferrous Met, 2006; 16:1882
[5] (张光业, 郭建亭, 张 华. 中国有色金属学报, 2006; 16: 1882)
[6] Yu X F, Tian S G, Wang M G, Zhang S, Lu X D, Cui S S. Mater Sci Eng, 2009; A499: 352
[7] Qi L C, Li Z X, Huang X. Rare Met, 2006; 30(special issue): 18
[7] (齐立春, 李臻熙, 黄 旭. 稀有金属, 2006; 30(专辑): 18)
[8] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[9] Xu L, Chu Z K, Cui C Y, Gu Y F, Sun X F. Acta Metall Sin, 2013; 49: 863
[9] (徐 玲, 储昭贶, 崔传勇, 谷月峰, 孙晓峰. 金属学报, 2013; 49: 863)
[10] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 41: 1215
[10] (刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215)
[11] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T, Harada H. Mater Sci Eng, 2011; A528: 5106
[12] Viswanathan G B, Sarosi P M, Whitis D H, Mills M J. Mater Sci Eng, 2005; A400-401: 489
[13] Kim W G, Yin S N, Kim Y W, Chang J H. Eng Fract Mech, 2008; 75: 4985
[14] Liu J J, Gong J M, Jiang Y, Shen L M, Geng L Y, Yin J F. Mater Mech Eng, 2011; 35(1): 89
[14] (刘建杰, 巩建鸣, 姜 勇, 沈利民, 耿鲁阳, 尹基奉. 机械工程材料, 2011; 35(1): 89)
[15] Prasad S C, Rao I J, Rajagopal K R. Acta Mater, 2005; 53: 669
[16] Yan J L, Sun Y S, Xue F, Tao W J. Acta Metall Sin, 2008; 44: 1354
[16] (晏井利, 孙扬善, 薛 烽, 陶卫建. 金属学报, 2008; 44: 1354)
[17] Ismael A M, Ahmed H, Johannes R. Mater Sci Eng, 2009; A504: 40
[18] Spigarelli S, Evangelista E, Cucchieri S. Mater Sci Eng, 2004; A387-389: 702
[19] Li X X, Xia C Q, Qi Y L, Wang Z H, Niu G S, Sun W. Rare Met Mater Eng, 2013; 42: 1901
[19] (李学雄, 夏长清, 戚延龄, 王志辉, 牛国帅, 孙 玮. 稀有金属材料与工程, 2013; 42: 1901)
[20] Hou J S, Zhang Y L, Guo J T, Ji G, Zhou L Z, Ye H Q. Acta Metall Sin, 2004; 40: 579
[20] (侯介山, 张玉龙, 郭建亭, 冀 光, 周兰章, 叶恒强. 金属学报, 2004; 40: 579)
[21] Cui C Y, Guo J T, Qi Y H, Ye H Q. Acta Metall Sin, 2002; 38: 342
[21] (崔传勇, 郭建亭, 齐义辉, 叶恒强. 金属学报, 2002; 38: 342)
[22] Tian S G, Xie J, Zhou X M, Qian B J, Lun J W, Yu L L, Wang W X. Mater Sci Eng, 2011; A528: 2076
[23] Xiao X, Zhou L Z, Guo J T. Acta Metall Sin, 2001; 37: 1159
[23] (肖 璇, 周兰章, 郭建亭. 金属学报, 2001; 37: 1159)
[24] Tian S G, Su Y, Qian B J, Yu X F, Liang F S, Li A A. Mater Des, 2012; 37: 236
[25] Caron P, Henderson P J, Khan T, McLean M. Scr Metall, 1986; 20: 875
[26] Ai S H. Acta Metall Sin, 1992; 28: 126
[26] (艾素华. 金属学报, 1992; 28: 126)
[1] 刘晓艳 潘清林 陆智伦 曹素芳 何运斌 李文斌. Al-Cu-Mg-Ag耐热铝合金高温蠕变行为[J]. 金属学报, 2011, 47(1): 53-60.
[2] 刘丽荣; 金涛; 赵乃仁; 王志辉; 孙晓峰; 管恒荣; 胡壮麒 . 一种镍基单晶高温合金蠕变机制的研究[J]. 金属学报, 2005, 41(11): 1215-1220 .
[3] 侯介山; 张玉龙; 郭建亭; 冀; 光; 周兰章; 叶恒强 . 铸造镍基合金K44的高温蠕变行为[J]. 金属学报, 2004, 40(6): 579-.
[4] 袁超;郭建亭;杨洪才;王淑荷. 定向凝固镍基高温合金的高温蠕变[J]. 金属学报, 1998, 34(8): 858-863.
[5] 袁超;郭建亭;王铁利;杨洪才;王淑荷;张皓. 施载方向对定向凝固镍基高温合金高温蠕变行为的影响[J]. 金属学报, 1998, 34(7): 689-695.
[6] 周清;马宗义;赵杰;毕敬;朱世杰;王富岗. 弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂[J]. 金属学报, 1998, 34(1): 107-112.
[7] 肖纪美. 抗断裂的材料设计[J]. 金属学报, 1997, 33(2): 113-125.
[8] 王岱峰;李戈扬;李鹏兴;吴人洁. SiC_p-Al复合材料蠕变断裂与空洞生长[J]. 金属学报, 1996, 32(4): 433-437.
[9] 艾素华;V.LUPINC;M.MALDINI. 单晶镍基高温合金的蠕变断裂[J]. 金属学报, 1992, 28(3): 32-37.
[10] 李培恩;叶宝瑞;张俊善;王富岗;金俊泽. 晶界碳化物在Fe-15Cr-25Ni合金蠕变断裂中的作用[J]. 金属学报, 1992, 28(1): 48-50.