Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1255-1260    
  论文 本期目录 | 过刊浏览 |
固体透氧膜法直接还原NiO-CeO2制备CeNi5合金
赵炳建1;2; 鲁雄刚1; 李重河1; 钟庆东1
1. 上海大学上海市现代冶金与材料制备重点实验室; 上海 200072
2.  河北钢铁集团唐山钢铁股份有限公司; 唐山 063016
DIRECT ELECTROCHEMICAL REDUCTION OF NiO–CeO2 POWDER FOR PREPARATION OF CeNi5 ALLOY BY SOLID–OXYGEN–ION
CONDUCTING MEMBRANE PROCESS
ZHAO Bingjian1;2; LU Xionggang 1; LI Chonghe1;ZHONG Qingdong1
1. Shanghai Key Laboratory of Modern Metallurgy and Materials Processing; Shanghai University; Shanghai 200072
2. Tangshan Iron and Steel Co.; Ltd; Hebei Iron and Steel Group; Tangshan 063016
引用本文:

赵炳建 鲁雄刚 李重河 钟庆东. 固体透氧膜法直接还原NiO-CeO2制备CeNi5合金[J]. 金属学报, 2009, 45(10): 1255-1260.
. DIRECT ELECTROCHEMICAL REDUCTION OF NiO–CeO2 POWDER FOR PREPARATION OF CeNi5 ALLOY BY SOLID–OXYGEN–ION
CONDUCTING MEMBRANE PROCESS[J]. Acta Metall Sin, 2009, 45(10): 1255-1260.

全文: PDF(1732 KB)  
摘要: 

在CaCl2熔盐中, 利用固体透氧膜(SOM)法直接电解混合氧化物NiO-CeO2制备CeNi5合金, 并与熔盐电解法(FFC)进行了对比. 阴极的制作方法与FFC法相同, 阳极为碳饱和Cu(或Sn) 液, 采用只允许氧离子通过的透氧膜隔开阴极和阳极, 这样可以采用较高的电解电压 (3.5 V)以获取更高的电解速率. 研究了SOM法制备CeNi5合金的可行性和影响因素, 如电解温度、电解时间, 以及产物的相组成和形 貌等. 结果表明: 通过SOM法, NiO-CeO2可完全还原为CeNi5. 电解中间产物的相组成分析表明, CeNi5的形成过程为: NiO首先还原为 Ni, 与随后生成的CeOCl反应生成CeNi5. SOM法与FFC法对比表明, 2.5 g的烧结试样采用SOM法电解3 h可电解完全, 电流效率为75.5%, 能耗为4.03 kW•h/kg; 采用FFC法需12 h才能电解出纯的CeNi5合金, 其电流效率为26.1%, 能耗为10.27 kW•h/kg. 相比于FFC法, SOM法具有更好的工业化应用前景.

关键词 透氧膜 电解 CeNi5 储氢合金    
Abstract

Ce–Ni base alloy CeNi5 is often used as the hydrogen storage alloy in Ni–H batteries. Its application is more or less limited by the high cost in the traditional preparing process. Therefore, lots of researchers have paid more attention to develop a novel process with high production efficiency and low cost. The goal of the present research was to demonstrate the technical viability of a new process (solid–oxygen–ion conducting membrane process, i.e., SOM process) for the production of  CeNi5 alloy directly from its oxide precursors. This process was improved on the basis of FFC process (Fray–Farthing–Chen Cambridge process): (1) the preparation of cathode was he same as that in FFC process, (2) Cu (oSn) liquid saturated with carbon was used as anode separated from the melt ba yttria–stabilized zirconia tube in which only oxygen–ion was permeated to prevent the side reactions and decomposition of molten salts taking place until a voltage as high as 3.5 V. This paper was focused on the preparation of hydrogen storage alloy CeNi5 by SOM process, some parameters such as molten salt temperature, electrolytic time, configurations and phase compositions of products were investigated. The results show that NiO–CeO2 pellets can be completely reduced to CeNi5 alloy by  SOM process. The analysis of phase compositions of intermediate products indicates that the reduction of NiO–CeO2 starts from NiO, it reduces firstly into Ni, then reacts with newly–formed CeOCl and finally forms CeNi5. The comparison of FFC and SOM processes shows that for SOM, NiO–CeO2 pellet (2.5 g) can be completely reuced to CeNi5 after electrolyzed for 3 h, and the current efficiency is 75.5%, the electrolysis energy consumption is only as low as 4.03 kW·h/kg; while for FFC, it takes 12 h for the same pellet to be reduced to pure CeNi5, and the current efficiency is 26.1% but the electrolysis energy consumption is 10.27 kW·h/kg. It could be concluded that SOM process has a bight future for industrial application.

Key wordsoxygen-ion membrane    electrolysis    CeNi5    hydrogen storage alloy
收稿日期: 2009-04-08     
ZTFLH: 

TG146.4

 
基金资助:

国家重点基础研究发展计划项目2007CB613606, 国家自然科学基金项目50774052和新世纪优秀人才计划项目06--0434资助

作者简介: 赵炳建, 男, 1974年生, 博士生

[1] Nakamura H, Nguyen–Manh D, Pettifor D G. J Alloys Compd, 1998; 281: 81
[2] Kisi X L, Suda S Z. Phys Chem, 1989; 164: 1235
[3] Wang C S, Mariza M R, Daniel A S. Int J Hydrogen Energy, 2006; 31: 603
[4] Tang R, Liu L Q, Liu Y N, Yu G, Zhu J W, Liu X D. Chin J Nonferrous Met, 2005; 15: 1057
(唐睿, 刘丽琴, 柳永宁, 于光, 朱杰武, 刘晓东. 中国有色金属学报, 2005; 15: 1057)
[5] Dischinger J, Schaller H J. J Alloys Compd, 2000; 312:201
[6] Chen G Z, Farthing T W. Nature, 2000; 407: 361
[7] Schwandt C, Fray D J. Electrochim Acta, 2005; 51: 66
[8] Dai L, Zhao B J, Wang L, Cui G H, Zhu L G, Li L N. J Funct Mater, 2008; 39: 453
(戴 磊, 赵炳建, 王 岭, 崔广华, 朱立光, 李丽娜. 功能材料, 2008; 39: 453)
[9] Hu X F, Xu Q. Acta Metall Sin, 2006; 42: 285
(胡小峰, 许茜. 金属学报, 2006; 42: 285)
[10] Deng L Q, Xu Q, Ma T, Li B, Zhai Y C. Acta Metall Sin, 2005; 41: 551
(邓丽琴, 许茜, 马涛, 李兵, 翟玉春. 金属学报, 2005; 41: 551)
[11] Zhao B J, Wang L, Dai L, Cui G H, Li Y H, Zhu L G. PowdeMetall Ind, 2008; 18: 23
(赵炳建, 王岭, 戴磊, 崔广华, 李跃华, 朱立光. 粉末冶金工业, 2008; 18: 23)
[12] Zhao B J, Wang L, Dai L, Cui G H, Zhou H Z, Kumar R V. J Alloys Compd, 2009; 468: 379
[13] Qiu G H, Wang D H, Jin X B, Chen G Z. Electrochim Acta, 2006; 51: 5785
[14] Cheng H W, Lu X G, Li Q, Liu J M, Ding W Z, Zhou G Z. Acta Metall Sin, 2006; 42: 500
(程红伟, 鲁雄刚, 李谦, 刘建民, 丁伟中, 周国治. 金属学报, 2006; 42: 500)
[15] He L, Lu X G, Chen C Y, Li Q, Li C H, Zhong Q D. Chin J Nonferrous Met, 2008; 18: 1336
(何理, 鲁雄刚, 陈朝轶, 李谦, 李重河, 钟庆东. 中国有色金属学报, 2008; 18: 1336)
[16] Chen C Y, Lu X G. Acta Metall Sin, 2008; 44: 145
(陈朝轶, 鲁雄刚. 金属学报, 2008; 44: 145)
[17] Chen C Y, Lu X G, Li Q, Liu J M, Cheng H W, Zhou G Z. J Mater Metall, 2007; 6: 204
(陈朝轶, 鲁雄刚, 李谦, 刘建民, 程红伟, 周国治. 材料与冶金学报, 2007; 6: 204)
[18] Krishnan A, Lu X G, Pal U B. Scand J Metall, 2005; 34: 293
[19] Krishnan A, Lu X G, Pal U B. Metall Mater Trans, 2005; 36B: 463
[20] Elena G, Chen G Z, Fray D J. Electrochim Acta, 2004; 49: 2195
[21] Chen G Z, Elena G, Fray D J. Metall Mater Trans, 2004; 35B: 223

[1] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[2] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[3] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[4] 程钊, 金帅, 卢磊. 电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2018, 54(3): 428-434.
[5] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[6] 金帅,程钊,潘庆松,卢磊. 添加剂浓度对直流电解沉积纳米孪晶Cu微观结构的影响*[J]. 金属学报, 2016, 52(8): 973-979.
[7] 薛云,杨雪,颜永得,张密林,纪德彬,李恩雨,韩伟. 在AlCl3的辅助下从LiCl-KCl-AlCl3-Nd2O3熔盐中电解提取Nd*[J]. 金属学报, 2016, 52(7): 883-889.
[8] 洪川,高运明,杨创煌,童志博. 1673 K下SiO2-CaO-MgO-Al2O3熔渣中 Ni2+的电化学行为*[J]. 金属学报, 2015, 51(8): 1001-1009.
[9] 金帅,潘庆松,卢磊. 电流密度对直流电解沉积纳米孪晶Cu微观结构的影响[J]. 金属学报, 2013, 49(5): 635-640.
[10] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[11] 王淑兰 陈晓云. CaCl2-NaCl-CaO熔盐中电解精炼Si的研究[J]. 金属学报, 2012, 48(2): 183-186.
[12] 张志明 王俭秋 韩恩厚 柯伟. 电解抛光态690TT合金经不同时间浸泡后表面氧化膜结构分析[J]. 金属学报, 2011, 47(7): 831-838.
[13] 贾明 田忠良 赖延清 刘芳洋 李劼 刘业翔. Na3AlF6-LiF体系下Al的水平电解精炼[J]. 金属学报, 2011, 47(6): 727-734.
[14] 刘光洲 王建明 张鉴清 曹楚南. 电解法处理压载水对316L不锈钢腐蚀行为的影响[J]. 金属学报, 2011, 47(12): 1600-1604.
[15] 刘光洲 王建明 张鉴清 曹楚南. 电解法处理船舶压载水对舱体用钢腐蚀行为的影响[J]. 金属学报, 2010, 46(9): 1093-1097.