Please wait a minute...
金属学报  2016, Vol. 52 Issue (4): 505-512    DOI: 10.11900/0412.1961.2015.00531
  论文 本期目录 | 过刊浏览 |
水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*
钟玉洁1,戴洪斌2(),王平2
1 中国科学院金属研究所, 沈阳 110016
2 华南理工大学材料科学与工程学院广东省先进储能重点实验室, 广州510641
PREPARATION OF Ni-Pt/La2O3 CATALYST AND ITS KINETICS STUDY OF HYDROUS HYDRAZINE FOR HYDROGEN GENERATION
Yujie ZHONG1,Hongbin DAI2(),Ping WANG2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
全文: PDF(879 KB)   HTML  
  
摘要: 

综合采用共沉淀和置换法制备了一种La2O3负载纳米级Ni-Pt合金催化剂Ni-Pt/La2O3. 经优化制备工艺, 该催化剂在323 K可100%催化N2H4H2O分解制氢, 反应速率340 h-1, 其催化性能优于已报道的多数催化剂. 此外, 还对N2H4H2O催化分解制氢反应动力学进行了研究, 得到其反应动力学方程为: r = -d[N2H4H2O]/dt = 2435exp(-51.32/(RT)) [N2H4H2O]0.3[NaOH]0(0.12)[Ni]1.03. 研究结果对于促进N2H4H2O分解制氢体系的实际应用奠定了基础.

关键词 水合肼制氢催化剂反应动力学    
Abstract

Safe and efficient hydrogen storage remains a grand challenge in the widespread implementation of hydrogen fuel cell technology. Recently, chemical hydrogen storage has emerged as a promising alternative for vehicular and portable applications. A number of hydrogen-rich materials have been experimentally demonstrated to deliver large amounts of hydrogen under mild conditions with controllable kinetics. Among these materials of interest, hydrous hydrazine (N2H4H2O) is a promising but yet not fully explored candidate. The development of highly efficient catalyst and its reaction kinetics law are the key issues of N2H4H2O-based hydrogen generation (HG) systems. Herein, a supported Ni-Pt/La2O3 catalyst was prepared by a combination of co-precipitation and galvanic replacement methods. Via optimizing preparing processes, the developed catalyst enabled a complete decomposition of N2H4H2O to generate H2 at a reaction rate of 340 h-1 at 323 K, which outperforms most reported N2H4H2O decomposition catalysts. Phase/structural analyses by XRD, TEM and XPS were carried out to gain insight into the catalytic performance of the Ni-Pt/La2O3 catalyst. In addition, the effects of temperature, concentration of N2H4H2O and NaOH, and amount of catalyst on the N2H4H2O decomposition were investigated over the Ni-Pt/La2O3 catalyst. The kinetic rate equation may be represented by the expression: r = -d[N2H4H2O]/dt = 2435exp(-51.53/(RT))[N2H4H2O]0.3[NaOH]0(0.12)[Ni]1.03. The obtained results should lay the experimental and theoretical foundation for developing practical application of N2H4H2O-based HG system.

Key wordshydrous hydrazine    hydrogen generation    catalyst    reaction kinetics
收稿日期: 2015-10-15      出版日期: 2015-11-03
基金资助:*国家杰出青年基金项目51125003和国家自然科学基金项目51471168资助

引用本文:

钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
Yujie ZHONG,Hongbin DAI,Ping WANG. PREPARATION OF Ni-Pt/La2O3 CATALYST AND ITS KINETICS STUDY OF HYDROUS HYDRAZINE FOR HYDROGEN GENERATION. Acta Metall, 2016, 52(4): 505-512.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00531      或      http://www.ams.org.cn/CN/Y2016/V52/I4/505

图1  采用共沉淀和置换法制备Ni-Pt/La2O3催化剂示意图
图2  Ni/La2O3, Ni90Pt10@Pt/La(OH)3和Ni-Pt/La2O3催化剂样品的XRD谱
图3  Ni90Pt10/La2O3 (Pt∶Ni=1∶30)催化剂样品的TEM像、HRTEM像、HAADF-STEM像及对应的EDS分析结果
图4  Ni/La2O3, Pt/La2O3和Ni90Pt10/La2O3 (Pt∶Ni=1∶30) 催化剂样品的XPS结果
Method Catalyst sample Reaction rate
h-1
H2 selectivity
%
Co-precipitation
Ni/La2O3 6 72
Ni90Pt10/La2O3 200 96
Pt/La2O3 0 0
Co-precipitation/
replacement

Ni90Pt10@Pt/La(OH)3 (Pt : Ni=1 : 30) 185 94
Ni90Pt10/La2O3 (Pt : Ni=1 : 40) 222 99
Ni90Pt10/La2O3 (Pt : Ni=1 : 35) 280 100
Ni90Pt10/La2O3 (Pt : Ni=1 : 30) 340 100
Ni90Pt10/La2O3 (Pt : Ni=1 : 25) 340 100
Ni90Pt10/La2O3 (Pt : Ni=1 : 20) 340 100
表1  采用共沉淀法和共沉淀-置换法制备的催化剂性能比较
图5  温度对Ni90Pt10/La2O3 (Pt∶Ni=1∶30)催化N2H4H2O分解制氢的影响和利用Arrhenius方程处理速率常数求表观活化能
图6  N2H4H2O浓度对Ni90Pt10/La2O3 (Pt∶Ni=1∶30)催化N2H4H2O分解制氢的影响和lnr对ln[N2H4H2O]作图
图7  NaOH浓度对Ni90Pt10/La2O3 (Pt∶Ni=1∶30)催化水合肼分解制氢的影响和lnr对ln[NaOH]作图
图8  Ni90Pt10/La2O3 (Pt∶Ni=1∶30)催化剂浓度对N2H4H2O分解制氢的影响和lnr 对ln[Ni]作图 ([Ni]∶0.1~0.3 mol/L)
[1] Wang P, Kang X D.Dalton Trans, 2008; 40: 5400
[2] Zhu Q L, Xu Q.Energy Environ Sci, 2015; 8: 478
[3] Demirci U B, Miele P.Energy Environ Sci, 2009; 2: 627
[4] Cho S J, Lee J, Lee Y S, Kim D P.Catal Lett, 2006; 109: 3
[5] Singh S K, Zhang X B, Xu Q.J Am Chem Soc, 2009; 131: 9894
[6] He L, Huang Y Q, Wang A Q, Wang X D, Zhang T.AIChE J, 2013; 59: 4297
[7] He L, Liang B L, Li L, Yang X F, Huang Y Q, Wang A Q, Wang X D, Zhang T.ACS Catal, 2015; 5: 1623
[8] He L, Huang Y Q, Wang X D, Chen X W, Delgado J J, Zhang T.Angew Chem Int Ed, 2012; 51: 6191
[9] Singh S K, Xu Q.J Am Chem Soc, 2009; 131: 18032
[10] He L, Huang Y Q, Wang A Q, Lu Y, Liu X Y, Chen X W, Delgado J J, Wang X D, Zhang T.J Catal, 2013; 298: 1
[11] Wen L, Du X Q, Su J, Luo W, Cai P, Cheng G Z.Dalton Trans, 2015; 13: 6212
[12] Singh S K, Singh A K, Aranishi K, Xu Q.J Am Chem Soc, 2011; 133: 19638
[13] Singh S K, Xu Q.Chem Commun, 2010; 46: 6545
[14] Singh A K, Xu Q.ChemCatChem, 2013; 5: 3000
[15] Singh A K, Xu Q.Int J Hydrogen Energy, 2014; 39: 9128
[16] Zhang J J, Kang Q, Yang Z H, Dai H B, Zhuang D W, Wang P.J Mater Chem, 2013; 1A: 11623
[17] Wang H L, Yan J M, Wang Z L, O S I, Jiang Q.J Mater Chem, 2013; 1A: 14957
[18] Wang H L, Yan J M, Li S J, Zhang X W, Jiang Q.J Mater Chem, 2015; 3A: 121
[19] Singh S K, Lu Z H, Xu Q.Eur J Inorg Chem, 2011; (14): 2232
[20] Singh S K, Iizuka Y, Xu Q.Int J Hydrogen Energy, 2011; 36: 11794
[21] Cao N, Su J, Luo W, Cheng G Z.Int J Hydrogen Energy, 2014; 39: 9726
[22] Cao N, Yang L, Du C, Su J, Luo W, Cheng G Z.J Mater Chem, 2014; 2A: 14344
[23] Jiang Y Y, Kang Q, Zhang J J, Dai H B, Wang P.J Power Sources, 2015; 273: 554
[24] Jiang Y Y, Dai H B, Zhong Y J, Chen D M, Wang P.Chem Eur J, 2015; 21: 15439
[25] Zhong Y J, Dai H B, Jiang Y Y, Chen D M, Zhu M, Sun L X, Wang P.J Power Sources, 2015; 300: 294
[26] Wang J, Zhang X B, Wang Z L, Wang L M, Zhang Y.Energy Environ Sci, 2012; 5: 6885
[27] Siegmann H C, Schlapbach L, Brundle C R.Phys Rev Lett, 1978; 40: 972
[28] Nikolla E, Schwank J, Linic S.J Am Chem Soc, 2009; 131: 2747
[29] Holewinski A, Xin H L, Nikolla E, Linic S.Curr Opin Chem Eng, 2013; 2: 312
[30] Zhang Q L, Wu Y, Sun X L, Ortega J.Ind Eng Chem Res, 2007; 46: 1120
[31] Zhang J S, Delgass W N, Fisher T S, Gore J P.J Power Sources, 2007; 164: 772
[32] Zhao B, Song J, Ran R, Shao Z P.Int J Hydrogen Energy, 2012; 37: 1133
[1] 杨晓丹, 姜春海, 杨振明, 张劲松. 泡沫SiC负载钴基结构化催化剂的制备及其催化性能*[J]. 金属学报, 2014, 50(6): 762-768.
[2] 张俊善; 汪涛; 祝美丽; 刘瑞岩 . 燃烧合成TiAl3化学反应动力学研究[J]. 金属学报, 2002, 38(10): 1027-1030 .
[3] 陈祖耀;陈■;朱玉瑞;陈文明;钱逸泰;杨丽. 紫外射线辐照制备Cu_2O超细粉及其宏观动力学[J]. 金属学报, 1997, 33(3): 330-336.
[4] 兰尧中;刘纯鹏. 催化还原碳钛磁铁矿反应动力学[J]. 金属学报, 1996, 32(5): 502-503.
[5] 孙笠;宋启洪;胡壮麒. 急冷Cu_(30)Al_(70)合金的结构及催化特性[J]. 金属学报, 1996, 32(1): 63-68.
[6] 孙守金;魏永良;刘敏;李敏君. 碳纤维表面气相生长碳晶须[J]. 金属学报, 1993, 29(4): 62-67.
[7] 朱联锡;邹四维. 高频等离子法制取超细氮化钛反应动力学研究[J]. 金属学报, 1990, 26(1): 135-140.