Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (4): 428-433    DOI:
论文 Current Issue | Archive | Adv Search |
FATIGUE STRENGTHS OF THE 54SiCr6 STEEL UNDER DIFFERENT CYCLIC LOADING CONDITIONS
CHEN Shuming; LI Yongde; LIU Yangbo; YANG Zhenguo; LI Shouxin; ZHANG Zhefeng
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

CHEN Shuming LI Yongde LIU Yangbo YANG Zhenguo LI Shouxin ZHANG Zhefeng. FATIGUE STRENGTHS OF THE 54SiCr6 STEEL UNDER DIFFERENT CYCLIC LOADING CONDITIONS. Acta Metall Sin, 2009, 45(4): 428-433.

Download:  PDF(2092KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since ultrasonic fatigue test has been used to study the very high cycle fatigue (107—109 cyc), the difference between ultrasonic and conventional fatigue test methods should be evaluated in order to ensure the validity of ultrasonic fatigue result. By comparing some results of other researchers, it is found that the frequency effect is negligible, and the loading condition is the main reason for the difference. A comparison of the fatigue strengths of the 54SiCr6 high strength spring steel under three kinds of cyclic loading conditions, rotating bending (RB), tension compression (TC) and ultrasonic (UL), was reported. The results reveal that the three kinds of fatigue specimens display different fracture features, and the fatigue strength of RB is the highest, TC is the lowest, and UL is somewhere in between. The difference in the fatigue strengths is mainly attributed to the distinctions of stress gradient and the size of specimens. By taking highly stressed cross–section area (HSCA) into consideration, a relationship of the fatigue strength and loading condition was proposed, and the two constants σlim,0 and σΞA in the equation of HSCA are mainly dependent on material strength and inclusion size, respectively. A relationship of fatigue strengths between RB and TC is also discussed specifically.

Key words:  high strength spring steel      cyclic loading      fatigue strength      highly stressed cross--section area (HSCA)     
Received:  22 September 2008     
ZTFLH: 

TG 142

 
Fund: 

Supported by National Basic Research Program of China (No.G2004CB619100)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I4/428

[1] Ebara R. Int J Fatigue, 2006; 28: 1465
[2] Yang Z G, Li S X, Zhang J M, Li G Y, Li Z B, Hui W J, eng Y Q. Acta Mater, 2004; 52: 5235
[3] Liu Y B, Yang Z G, Li Y D, Chen S M, Li S X, Hui W J, Weng Y Q. Mater Sci Eng, 2008; A497: 408
[4] Lu L T, Zhang W H. J Mech Strength, 2005; 27: 388
(鲁连涛, 张卫华. 机械强度, 2005; 27: 388)
[5] Lu L T, Shiozawa K, Morii Y, Nishino S. Acta Metall Sin, 2005; 41: 1066
(鲁连涛, 盐泽和章, 森井佑一, 西野精一. 金属学报, 2005; 41: 1066)
[6] Wang Q Y, Bathias C, Kawagoishi N, Chen Q. Int J Fatigue, 2002; 24: 1269
[7] Wang Q Y. J Mater Sci, 2004; 39: 365
[8] Furuya Y, Matsuoka S, Abe T, Yamaguchi K. Scr Mater, 2002; 46: 157
[9] Marines I, Dominguez G, Baudry G, Vittori J F, Rathery S, Doucet J P, Bathias C. Int J Fatigue, 2003; 25: 1037
[10] Wang Q Y, Berard J Y, Dubarre A, Baudry G, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 667
[11] Gaenser H P. Comput Mater Sci. 2008; 44: 230
[12] Shiozawa K, Morii Y, Nishino S, Lu L. Int J Fatigue, 2006; 28: 1521
[13] Murakami Y, Matsunaga H. Int J Fatigue, 2006; 28: 1509
[14] Lin J Z, Liu S H, Song Z L, Guo L Y, Zou D Q. Metal Defects, Loading and Fatigue. Beijing: China Railway Press, 1993: 69
(林吉忠, 刘淑华, 宋子濂, 郭灵彦, 邹定强. 金属的缺陷、载荷与疲劳. 北京: 中国铁道出版社, 1993: 69)
[15] Bazant Z P. J Eng Mech ASCE, 1984; 110: 518
[16] Carpinteri A. Int J Solids Struct, 1989; 25: 407
[17] Findley W. J Mech Eng Sci, 1972; 14: 424
[18] Frost N, Marsh K, Pook L. Metal Fatigue. Oxford–New York: Dover Pubblications, 1999: 2
[19] Carpinteri A, Spagnoli A, Vantadori S. Fatigue Fract Eng Mater Struct, 2002; 25: 619
[20] Kuguel R. Proc ASTM, 1961; 61: 732
[21] Sonsino C. Konstruktion, 1993; 45: 25
[22] Sonsino C, Fischer G. Materialwissenschaft und Werkstofftechnik, 2005; 36: 632
[23] Zhao H M, Hui W J, Nie Y H, Dong H, Weng Y Q. Iron, 2008; 43(5): 66
(赵海民, 惠卫军, 聂义宏, 董 瀚, 翁宇庆. 钢铁, 2008; 43(5): 66)
[24] Hui W J, Zhao H M, Nie Y H, Weng Y Q, Dong H. In: Hong J B ed. Proceedings of CSM2007 Annual Meeting, Beijing: The Chinese Society for Metals. 2007: 4
(惠卫军, 赵海民, 聂义宏, 翁宇庆, 董瀚. 洪及鄙主编. 2007中国钢铁年会论文集, 北京: 中国金属学会. 2007: 4)
[25] Ochi Y, Matsumura T, Masaki K, Yoshida S. Fatigue Fract Eng Mater, 2002; 25: 823

[1] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[2] HONG Youshi ZHAO Aiguo QIAN Gui'an. ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS[J]. 金属学报, 2009, 45(7): 769-780.
[3] QIAN Gui'an HONG Youshi. EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr[J]. 金属学报, 2009, 45(11): 1356-1363.
[4] Qian-Hua Kan; Guozheng Kang. EXPERMENTAL STUDY ON TRANSFORMATION RATCHETING OF SUPERELASTIC NITI ALLOY[J]. 金属学报, 2008, 44(8): 949-955 .
[5] . [J]. 金属学报, 2007, 43(10): 1031-1036 .
[6] CUI Yuyou; XIANG Hongfu; JIA Qing; YANG Rui. Effects of Thermal Exposure on the Tensile and Fatigue Properties of Cast Ti—47Al—2Cr—2Nb--0.15B Alloy[J]. 金属学报, 2005, 41(1): 108-.
[7] YANG Zhenguo; ZHANG Jiming; LI Shouxin. FATIGUE BEHAVIOR OF FINE--GRAINED HIGH STRENGTH STEEL 42CrMoVNb[J]. 金属学报, 2004, 40(4): 367-372 .
[8] FENG Zhongxin;ZHANG Jianzhong; YANG Jian jun; CHEN Xinzeng1) Xi'an Jiaotong University;Xi'an 710049)(2) Ningbo College; Ningbo 315010). PLASTIC DEFORMATION PROPAGATION CHARACTERISTIC OF METALS UNDER CYCLIC LOADING[J]. 金属学报, 1995, 31(8): 351-355.
[9] FENG Zhongxin(Xi'an Jiaotong University);ZHANG Jianzhong;CHEN Hinzeng(Ningbo College)(Manuscript received 5 October;1993; in revised form 4 January;1994). SURFACE ROLLING STRENGTHENING OF Mg ALLOY ZMl[J]. 金属学报, 1994, 30(9): 422-426.
[10] WANG Dezun; LIU Jun (Harbin Institute of Technology); YU Weicheng; WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences); YAO Zhongkai(Harbin Institute of Technology)(Manuscript received 23 April; 1993). FATIGUE STRENGTH OF EXTRUDED SiC_W/ LD_2 COMPOSITE AND ITS INFLUENCING FACTORS[J]. 金属学报, 1994, 30(4): 176-180.
[11] ZHOU Xiangyang;KE Wei;ZANG Qishan Institute of Corrosion and Protection of Metal. Academia Sinica; Shenyang Institute of Metal Research; Academia Sinica; Shenyang Institute of Corrosion and Protection of Metal;Academia Sinica; Shenyang 110015. EVOLUTION OF STATISTICAL DISTRIBUTION OF PIT GEOMETRIC PARAMETERS UNDER FATIGUE LOADING[J]. 金属学报, 1990, 26(2): 110-115.
[12] TAN Yuxu;REN Liping;LI Gang Xi'an Jiaotong University TAN Yuxu; Associate professor; Institute of Metallic Materials and Strength; Xi'an Jiaotong University; 710048 Xi'an. EFFECT OF SUBSTRUCTURE AND RESIDUAL STRESS IN STRENGTHENED LAYER ON FATIGUE STRENGTH OF STAINLESS STEEL OR LOW CARBON STEEL[J]. 金属学报, 1989, 25(5): 59-64.
[13] CHEN Wenzhe;QIAN Kuangwu Fuzhou University. EFFECTS OF DYNAMIC STRAIN AGING ON PURE BENDING FATIGUE STRENGTH OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 1989, 25(2): 56-60.
No Suggested Reading articles found!