Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 818-822     DOI:
Research Articles Current Issue | Archive | Adv Search |
PITT investigation of apparent diffusion of lithium-ion through PLD-deposited HT-LiCoO2 films
ZHANG Yao;Chi-Yuen CHUNG;
华南理工大学机械学院
Cite this article: 

ZHANG Yao; Chi-Yuen CHUNG. PITT investigation of apparent diffusion of lithium-ion through PLD-deposited HT-LiCoO2 films. Acta Metall Sin, 2007, 43(8): 818-822 .

Download:  PDF(582KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this work, LiCoO2 films were prepared with the pulsed laser deposition (PLD) method. Their structure was characterized by X-ray diffraction, Raman spectra and Scanning electron microscopy and their electrochemical properties were evaluated with cyclic voltammetry (CV). Results showed that LiCoO2 films prepared with PLD at 600℃ had a well-crystallized columnar HT-LiCoO2 structure with the average grain size less than 100nm and with a strong [001] preferred orientation, while these films contain trace amount of Co3O4. CV tests indicated that PLD-deposited HT-LiCoO2 films had good electrochemical reversibility but only a pair of redox peaks near 3.9V(vs Li) were observed in the cyclic voltammograms. Thereafter, emphasis was laid on the study of apparent diffusion of lithium-ion through LiCoO2 films using the potentiostatic intermittent titration technique (PITT). PITT measurements revealed that the lithium-ion diffusion coefficient of PLD-deposited HT-LiCoO2 films reached 10-8~10-9cm2s-1, 1-2 orders of magnitude faster than those prepared by other methods including R.F. magnetron sputtering and, in the voltage range between 3.85~3.95V(vs Li), the lithium-ion diffusion coefficient of PLD-deposited HT-LiCoO2 films was 1-2 orders of magnitude lower than other voltage ranges. The former should be ascribed to the grain refinement of PLD-deposited HT-LiCoO2 films and existence of many voids, while the later may due to the hindrance arising from phase boundary movement.
Key words:  LiCoO2      pulsed laser deposition      thin film battery      lithium ion diffusion      
Received:  04 December 2006     
ZTFLH:  O484.4  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/818

[1]Reimers J N,Dahn J R.J Electrochem Soc,1992;39:2091
[2]Bueno P R,Leite E R.J Phys Chem,2003;107B:8868
[3]Wang B,Bates J B,Hart F X,Sales B C,Zuhr R A, Robertson J D.J Electrochem Soc,1996;143:3203
[4]Polo da Fonseca N,Davalos J,Kleinke M,Fantini M C A, Gorenstein A.J Power Sources,1999;81-82:575
[5]Kim W S.J Power Sources,2004;134:103
[6]Liao C L,Fung K Z.J Power Sources,2004;128:263
[7]Iriyama Y,Inaba M,Abe T,Ogumi Z.J Power Sources, 2001;94:175
[8]Julien C,Camacho-Lopez M A,Alarcon L E,Poniatowski E H.Mater Chem Phys,2001;68:210
[9]Perkins J D,Bahn C S,McGraw J M,Parilla P A,Ginley D S.J Electrochem Soc,2001;148A:1302
[10]Bouwman P J,Boukamp B A,Bouwmeester H J M,Not- ten P H L.J Electrochem Soc,2002;149A:699
[11]Tang S,Lu L,Lai M O.Philos Mag,2005;85:2831
[12]Xia H,Lu L,Ceder G.J Alloys Compd,2006;417:304
[13]Cho S I,Yoon S G.J Electrochem Soc,2002;149A:1584
[14]Kushida K,Kuriyama K.J Cryst Growth,2002;237-239: 612
[15]Kim K W,Woo S I,Choi K H,Han K S,Park Y J.Solid State Ionics,2003;159:25
[16]Chen C H,Kelder E M,Jak M J G,Schoonman J.Solid State Ionics,1996;86-88:1301
[17]Shin H C,Pyun S I.Electrochim Acta,2001;46:2477
[18]Xia H,Lu L,Ceder G.J Power Sources,2006;159:1422
[19]Montella C.Electrochim Acta,2006;51:3102
[20]Wen C J,Boukamp B A,Huggins R A.J Electrochem Soc, 1979;126:2258
[21]Aurbach D,Levi M D,Levi E,Teller H,Markovsky B, Salitra G,Heider U,Heider L.J Electrochem Soc,1998; 145:3024
[22]Peng W J,Li X H,Wang Y Y,Wang Z X,Guo H J.J Cent South Univ(Sci Technol),2004;35:568 (彭文杰,李新海,王云燕,王志兴,郭华军.中南大学学报(自然科学版),2004;35:568)
[1] REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. 金属学报, 2022, 58(7): 911-920.
[2] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[3] SUN Lina, TAN Jun, BA Dechun, YUAN Peixin. UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM[J]. 金属学报, 2014, 50(1): 88-94.
[4] TONG Liuniu; LI Tai; XIA Ailin; HU Jinlian; LEE Changyu. The magnetic properties and interface electronic structure for the epitaxial Fe/MgO/Fe(001) single crystal magnetic tunneling junctions[J]. 金属学报, 2007, 43(11): 1165-1170 .
[5] Ge-Yang LI. Study on the Sensitivity of Mechanical Properties of TiN/Si3N4 Nano-structured Film to Si3N4 Layer Thickness[J]. 金属学报, 2007, 43(2): 154-158 .
[6] WANG Lijin; ZHANG Hui; TENG Jiao; ZHU Fengwu. EFFECTS OF Ta SEED LAYER ON THE MICROSTRUCTURE AND MAGNETIC PROPERTY OF Ni65Co35 FILMS[J]. 金属学报, 2006, 42(9): 979-982 .
[7] FU Engang; ZHUANG Daming; ZHANG Gong. Infrared properties and mechanism of Al-doped ZnO thin films[J]. 金属学报, 2005, 41(3): 333-336 .
[8] ZOU Yousheng; WANG Wei; ZHENG Jingdi; SUN Chao; HUANG Rongfang; WEN Lishi. Influence of Bias Voltage on Diamond-Like Carbon Film Deposited by Arc Ion Plating[J]. 金属学报, 2004, 40(5): 537-540 .
[9] LI Liuhe; WU Yongqin; CUI Xuming; ZHANG Haiquan; ZHANG Yanhua; XIA Lifang; Paul K. Chu. Raman Spectra of Diamond-Like Carbon Films Deposited by Vacuum Cathodic Arc[J]. 金属学报, 2004, 40(2): 220-224 .
[10] . [J]. 金属学报, 2003, 39(7): 775-780 .
[11] . [J]. 金属学报, 2003, 39(3): 332-336 .
[12] . [J]. 金属学报, 2001, 37(10): 1097-1099 .
[13] . [J]. 金属学报, 2001, 37(5): 477-482 .
[14] . [J]. 金属学报, 2001, 37(3): 277-280 .
[15] . [J]. 金属学报, 2000, 36(11): 1165-1168 .
No Suggested Reading articles found!