Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (11): 1129-1137     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF PRIMARY AND SECONDARY ALPHA PHASE ON TENSILE PROPERTY AND FRACTURE TOUGHNESS OF Ti-1023 TITANIUM ALLOY
Cite this article: 

. EFFECT OF PRIMARY AND SECONDARY ALPHA PHASE ON TENSILE PROPERTY AND FRACTURE TOUGHNESS OF Ti-1023 TITANIUM ALLOY. Acta Metall Sin, 2007, 43(11): 1129-1137 .

Download:  PDF(1566KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ti-1023 is a typical near-β titanium alloy, which has attracted extensive attention for such particular advantages as good damage tolerance and deeper hardenability as compared with its congeners. In present article, individual and collective effects of primary and secondary  phase on tensile property and fracture toughness were systematically investigated on Ti-1023 titanium alloy. It was found that the volume fraction of primary  phase (p) plays the main role in influencing the tensile properties by way of altering the concentration of solute atoms in metastable β phase, while the p morphology plays the minor role. Pronounced effect of secondary  phase (s) on tensile properties was observed, depending on the amount, morphology and size of s. And the strengthening effect secondary  phase is weakened with increasing of the volume fraction of p. Limited effect of p on fracture toughness of Ti-1023 alloy was found and better balance between fracture toughness and strength can be achieved by way of lowering volume fraction of p and increasing amount and size of s particles.
Key words:       
Received:  06 March 2007     
ZTFLH:  TG113  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I11/1129

[1]Boyer R R,Eylon D,Lutjering G.Fatigue Behavior of Titanium Alloys.Warrendale,PA:TMS,1999:149
[2]Boyer R R.JOM,1980;32:61
[3]Terinde G T,Duering T W,Williams J C.Metall Trans, 1983;14A:2101
[4]Leyens C,Peters M.Titanium and Titanium Alloys, Cologne,Germany:WILEY-VCH Verlag GmbH & Co. KGaA,2003:42
[5]Terlinde G,Rathjen H J,Schwalbe K H.Metall Trans, 1988;19A:1037
[6]Eylon D,Boyer R R,Koss D A.Strengthening Capability of Beta Titanium Alloy of the 1990's.Warrendale,PA: TMS,1993:187
[7]Boyer R R,Eylon D,Lutjering G.Fatigue Behavior of Titanium Alloys.Warrendale,PA:TMS,1999:135
[8]Boyer R R,Kuhlman G W.Metall Trans,1987;18A:2095
[9]Applied Research Corpus of Ti-1023 Titanium Alloys Used in Aircraft(Unpublished).1994:164 (Ti-1023钛合金在航空器上的应用研究文集(中国科学院金属研究所内部资料).1994:164)
[10]Froes F H,Caplan I.Titanium'92 Science and Technol- ogy.Warrendale,PA:TMS,1993:77
[11]Benedetti M,Peters J O,Lutjering G.Titanium'03 Sci- ence and Technology,Proc 10th World Conf on Titanium, Hamburg,Germany:WlLEY-VCH Verlag GmbH & Co. KGaA,2003:1659
[12]Boyer R,Welsch G,Collings E W.Materials Properties Handbook:Titanium Alloys.Materials Park,OH:ASM International,1994:829
[13]Bhattacharjee A,Bhargava S,Varma V K,Kamat S V, Gogia A K.Scr Mater,2005;53:195
[14]Duerig T W,Albrecht J,Richter D,Fischer P.Acta Met- all,1982;30:2161
[15]Grosdidier T,Combres Y,Gautier E,Philippe M J.Metall Mater Trans,2000;31A:1095
[16]Peters J O,Lutjering G.Metall Mater Trans,2001;32A: 2805
[17]Toyama K,Maeda T.Trans Iron Steel Inst Jpn.1986;26: 814
[18]Hirth J P,Froes F H.Metall Trans,1977;8A:1165
[19]Blenkinsop P A,Evans W J,Flowers H M.Titanium'95 Science and Technology.London:Institute of Materials, 1996:948
[20]Lee C S,Kim S J,Park C G,Chang Y W.Key Eng Mater, 1991;51-52:197
[21]Blenkinsop P A,Evans W J,Flowers H M.Titanium'95 Science and Technology.London:Institute of Materials, 1996:988
[22]Blenkinsop P A,Evans W J,Flowers H M.Titanium'95 Science and Technology.London:Institute of Materials, 1996:933R
[1] WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. 金属学报, 2021, 57(1): 1-15.
[2] TUNG Feng'en;WANG Yuming Institute of Materials Science; Jilin University; Changchun. X-RAY ANALYSIS OF WORK-HARDENING PROCESS FOR POLYCRYSTALLINE а-BRASS DURING UNIAXIAL TENSILE TEST[J]. 金属学报, 1989, 25(2): 82-84.
[3] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[4] DU Hegui;LIU Xin Northeast University of Technology; Shenyang. KINETICS OF CARBON COMBUSTION IN PLASMA AIR[J]. 金属学报, 1989, 25(2): 85-88.
[5] . [J]. 金属学报, 2001, 37(1): 42-46 .
[6] . [J]. 金属学报, 1999, 35(3): 320-324 .
[7] . [J]. 金属学报, 2000, 36(1): 72-76 .
[8] . [J]. 金属学报, 1999, 35(3): 330-333 .
[9] . [J]. 金属学报, 1999, 35(3): 334-336 .
[10] . [J]. 金属学报, 2000, 36(6): 647-650 .
[11] . [J]. 金属学报, 2000, 36(6): 655-658 .
[12] No Author. ACTA METALLURGLCA SLNLCA Volume 28 Series A 1992 SUBJECT INDEX[J]. 金属学报, 1992, 28(12): 63-90.
[13] . [J]. 金属学报, 2000, 36(7): 780-784 .
[14] No Author. ACTA METALLURGICA SINICA(JINSHU XUEBAO) Volume 28 1992 AUTHOR INDEX[J]. 金属学报, 1992, 28(12): 71-94.
[15] Хань Яо-вэнь Инсмцмум мемаддов АН КНР;Г.н.Ойкс Московскц цнсмцмум смадц. НЗУЧЕНИЕ ПРОЦЕССОВ ДЕСУЛЬФУРАЦИИ ХНДКОΓО МЕТАЛЛА В ВАКУУМЕ[J]. 金属学报, 1963, 6(2): 98-110.
No Suggested Reading articles found!