Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (7): 713-720     DOI:
Research Articles Current Issue | Archive | Adv Search |
Evolution of Microstructure of Full Lamellar Titanium Alloy BT18Y Solutionized At Phase Field
YANG Yi; XU Feng; HUANG Aijun; LI Geping
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang110016
Cite this article: 

YANG Yi; XU Feng; HUANG Aijun; LI Geping. Evolution of Microstructure of Full Lamellar Titanium Alloy BT18Y Solutionized At Phase Field. Acta Metall Sin, 2005, 41(7): 713-720 .

Download:  PDF(719KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  BT18Y titanium alloy was treated with several groups of heat treatment. After solutionized frectment at phase field, metalloscopy, transmission electron Microscope (TEM) and scanning electron microscopy (SEM) were employed to observe the microstructures. It was found that the continuous grain boundary (GB) phase is spheroidizes and the edges of some intragranular primarylaths show “forked” morphology. The ultimate reason of the spheroidization of GB is the diffusion of solute atoms due to the difference of solute concentration, which results from the different interfacial curvatures at different sites. The joint of two GB lamellas also gives some contribution to the spheroidization of GB . The “forked” morphology at the edge of primary lath results from different interfacial structures and energies between phase and different parts oflath. The incoherent interface between phase and the edge of lath has high interfacial energy and moves easily. When the alloy is solutionized at phase field, phase trends to grow into lath and forms lath, which results the “forked” morphology of primary lath.
Key words:  BT18Y titanium alloy      spheroidization      “forked” morphology      
Received:  11 October 2004     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I7/713

[1]Lee D H,Nam S W.Scr Mater,1999;40:265
[2]Bolisowa E A.Translated by Chen S Q.Metallography of Titanium Alloys.Beijing:Defense Industrial Press,1980: 246,214,227,199 (鲍利索娃E.A.编著,陈石卿译.钛合金金相学.北京:国防 工业出版社,1986:246,214,227,199)
[3] Wang Q Y,Ge Z M,Zhou Y B.Aerial Titanium Alloy. Shanghai:Shanghai Science and Technology Press,1985: 209,211,302 (王全友,葛志明,周彦邦.航空用钛合金.上海:上海科学技 术出版社, 1985:210,190,302)
[4]Filip R,Kubiak K,Ziaja W,Sieniawski J.Mater Proc Technol,2003;133:84
[5]Peng C Q,Huang B Y,He Y H.Chin Nonferrous Met, 2001;11:527 (彭超群,黄伯云,贺跃辉.中国有色金属学报,2001;11:527)
[6] Tiley J,Searles T,Lee E,Kar S,Banerjee R,Russ J C, Fraser H L.Mater Sci Eng,2004;A372:191
[7] Lee D H, Nam S W, Choe S J. Mater Sci Eng, 2000; A291: 60
[8] Semiatin S L, Seetharaman V, Ghosh A K, Shell E B, Simon M P, Fagin P N. Mater Sci Eng, 1998; A256: 92
[9] Seshacharyulu T, Medeiros S C, Morgan J T, Malas J C, Frazier W G, Prasad Y V R K. Mater Sci Eng, 2000; A279: 289
[10] Seshacharyulu T, Medeiros S C, Frazier W G, Prasad Y V R K. Mater Sci Eng, 2002; A325: 112
[11] Sauer C, Lutjering G.Mater Sci Eng, 2001; A319-321: 393
[12] Lutjering G. Mater Sci. Eng, 1999; A263: 117
[13] Zhang X D, Bonniwell P, Fraser H L, Baeslack W A, Evans D J, Ginter T, Bayha T, Cornell B. Mater Sci Eng, 2003; A343: 210
[14] Koike J, Maruyama K. Mater Sci Eng, 1999; A263: 155
[15] Furuhara T, Ogawa T, Maki T. Philos Mag Lett, 1995; 72 (3): 175
[16] Bhattacharyya D, Viswanathan G B, Robb D, Furrer D, Hamish L F. Acta Mater, 2003; 51: 4679
[17] Huang A J, Xu F, Li G P, Li D. Acta Metall Sin, 2002; 38(Suppl.): S217 (黄爱军,徐锋,李阁平,李 东.金属学报, 2002;3s(增 刊):S217)
[18] Furuhara T, Takagi S, Watanabe H, Maki T. Metall Trans, 1996; 27A: 1635
[19] Miyano N, Fujiwara H, Ameyama K, Weatherly G C. Mater Sci Eng, 2002; A333: 85
[20] Cui Z Q. Metallography and Heat Treatment. Beijing: China Machine Press, 1995: 257 (崔忠圻.金属学与热处理.北京:机械工业出版社,1995:257)
[21] Xia L F. Metallic Heat Treatment Technology. Herbin: Harbin University of Technology Press, 1998: 28 (夏立芳.金属热处理工艺学.哈尔滨:哈尔滨工业大学出版社, 1998:28)
[22] Xu Z Y. The Theory of Phase Transition. Beijing: Science Press, 2000: 22 (徐祖耀.相变原理.北京:科学出版社, 2000:22)
[23] Huang A J, Li G P, Hao Y L,Yang R. Ada Mater, 2003; 51: 4939
[24] Viswanathan G B, Karthikeyan S, Hayes R W, Mills M J. Acta Mater, 2002; 50: 4965
[25] Savage M F, Tatalovich J, Zupan M, Hemker K J, Mills M J. Mater Sci Eng, 2001; A319-321: 398
[26] Seward G G E, Celotto S, Prior D J, Wheeler J, Pond R G. Acta Mater, 2004; 52: 821H
[1] HOU Yubai, YU Yueguang, GUO Zhimeng. Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys[J]. 金属学报, 2021, 57(2): 247-256.
[2] LIU Xiaobo, ZHAO Yuguang. MICROSTRUCTURE EVOLUTION AND WEAR RESISTANCE OF IN SITU Mg2Si/Al COMPOSITES UNDER DIFFERENT PREPARATION CONDITIONS[J]. 金属学报, 2014, 50(6): 753-761.
[3] CHEN Wei LI Longfei YANG Wangyue SUN Zuqing ZHANG Yan. MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al[J]. 金属学报, 2009, 45(2): 156-160.
[4] ZHANG Haiyan ZHANG Shihong CHENG Ming. EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS[J]. 金属学报, 2009, 45(12): 1451-1455.
[5] ;. Microstructure Evolution of medium carbon steel during deformation of undercooled austenite[J]. 金属学报, 2007, 42(1): 27-34 .
[6] MAO Weimin Beijing Polytechnic University University of Science and Technology Beijing. BEHAVIOUR OF TRACE Mg IN HIGH SPEED STEEL M2[J]. 金属学报, 1993, 29(11): 14-17.
No Suggested Reading articles found!