Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 623-    DOI:
Research Articles Current Issue | Archive | Adv Search |
A Mathematical Model on Coalescence and Removal of Inclusion Particles in Continuous Casting Tundish
ZHANG Bangwen; DENG Kang; LEI Zuosheng; REN Zhongming
Shanghai Enhanced Laboratory of Ferro--Metallurgy; Shanghai University; Shanghai 200072
Cite this article: 

ZHANG Bangwen; DENG Kang; LEI Zuosheng; REN Zhongming. A Mathematical Model on Coalescence and Removal of Inclusion Particles in Continuous Casting Tundish. Acta Metall Sin, 2004, 40(6): 623-.

Download:  PDF(10018KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Combing Euler framework for flow fluid and Larangian framework for particle motion, a statistic model coupling the motion, coalescence and removal of inclusion in molten melts has been developed to interpret the basic behavior of inclusion in continuous casting tundish. Numerical calculation was conducted for 3D turbulent flow field using turbulence model, then the removal efficiencies and growth rate of inclusion were statistically computed based on the random--trajectory model. The results indicate that the total removal efficiencies of 10, 20 and 30um inclusion are approximately 20%, 36% and 75% respectively, of which the attribution due to adhesion to the refractory of inclusion occupies 1/6--1/4. It is found that the growth of inclusion due to coalescence is not marked, restricted by the realistic condition in tundish.
Key words:  continuous casting      tundish      inclusion      removal      
Received:  26 June 2003     
ZTFLH:  TB115  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/623

[1] Mazumdar D, Yamanoglu G, Shankarnaryana R, Gutrrie R I L. Steel Res, 1995; 66(1) : 14
[2] Gao W F, Liu C X, Ma Q X. Iron Steel, 1997; 32(Suppl.):740(高文芳, 刘成信, 马勤学.钢铁, 1997;32(Suppl.) : 74r)
[3] He Y D, Sahai Y. Acta Metall Sin, 1989; 25: B272(贺友多, Sahai Y. 金属学报, 1989; 25: B272)
[4] Soo J, Gethrie R I L. Metall Trans, 1993; 24B: 755
[5] Ilegbusi O J, Szekely J. ISIJ Int, 1989; 29(2) : 1031
[6] Sinha A K, Sahai Y. ISIJ Int, 1993; 33(5) : 556
[7] Miki Y, Thomas B G. Metall Trans, 1999; 30B: 639
[8] Tozawa H, Kata Y, Sorimachi K. ISIJ Int, 1999; 39(5) :426
[9] Zhang L, Taniguchi S, Cai K. Metall Mater Trans, 2002;31B: 253
[10] Zhang B W, Li B W, Liu Z X. J Baotou Univ Iron Steel,1999; 18(2) : 125(张邦文, 李保卫, 刘中兴.包头钢铁学院学报, 1999; 18(2) :125)
[11] Li B K, He J C. J Res Iron Steel 1997: 9(5) : 1(李保宽, 赫冀成. 钢铁研究学报, 1997;9(5) : 1)
[12] Nakaoka T. Camp ISIJ 1997; 10: 760
[13] Crowe C, Sommerfad M, Tsuji Y. Multiphase Flows with Drops and Particles. CRC Press, 2000: 37
[14] Fang D Y. Two Phase Flow. Changsha: National Defence Univ of Scinece and Technology 1988: 34(方丁酉,两相流.长沙: 国防科技大学出版社, 1988: 34)
[15] Gosman A D, Ioannidest E. J Eneryy, 1983; 7(1) : 482
[16] Kallio G A, Reeks M W. J Int Multiphase Flow, 1989;15(3) : 433
[17] Zhang B W, Ren Z M, Zhong Y B, Deng K. J Rare Earth,2002; 20: 398(张邦文, 任忠鸣, 钟云波, 邓康. 稀土学报, 2002;20: 398)
[18] Zhang B W. PhD Dissertation, Shanghai University 2003:46(张邦文. 上海大学博士学位论文, 2003: 46)
[19] Patanker S V. Numerical Heat Transport and Fluid Flow,McGraw-Hill Book Comp., 19807
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[6] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[7] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[8] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[9] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[10] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[11] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[12] CAI Laiqiang, WANG Xudong, YAO Man, LIU Yu. Meshless Method for Non-Uniform Heat Transfer/Solidification Behavior of Continuous Casting Round Billet[J]. 金属学报, 2020, 56(8): 1165-1174.
[13] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[14] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[15] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
No Suggested Reading articles found!