|
|
Hydrogen Storage Properties of Mg and Mg-Ni Films Prepared by Thermal Evaporation |
WANG Hui; OUYANG Liuzhang; ZENG Meiqin; ZHU Min |
College of Mechanical Engineering; South China University of Technology; Guangzhou 510640 |
|
Cite this article:
WANG Hui; OUYANG Liuzhang; ZENG Meiqin; ZHU Min. Hydrogen Storage Properties of Mg and Mg-Ni Films Prepared by Thermal Evaporation. Acta Metall Sin, 2004, 40(5): 531-536 .
|
Abstract Microstructure and hydrogenation properties of Mg and Mg-Ni films fabricated by thermal
evaporation method were investigated. The as deposited Mg film exhibits a preferred orientation and a
typical columnar crystalline structure. The as deposited Mg-Ni film with a composition of Mg78Ni22 is
composed of nanocrystalline Mg2Ni, Mg and a small amount of amorphous phase. Besides, the Mg2Ni
crystallites grow with their (001) crystalline plane parallel to the substrate surface. The hydrogen
absorption and desorption temperatures of pure Mg film are 593 K and 653
K, respectively and its
hydriding reaction follows a nucleation and growth mechanism. Pressure-composition isotherms of
Mg78Ni22 film show that its maximum hydrogen
absorption capacity (mass fraction) reaches to
5.7\% and there are the lower and higher pressure plateaus corresponding to the
hydriding reactions of Mg and Mg2Ni, respectively. The hydriding/dehydriding temperatures of Mg in
Mg78Ni22 film decreased down to 473 K and 503 K, respectively. The improvement on the
hydrogenation properties of Mg is related to the catalytic role of nanocrystalline Mg2Ni and
amorphous phase.
|
Received: 09 May 2003
|
|
[1] Zaluska A, Zaluski L, Strom-Olsen J O. Appl Phys, 2001; 72A: 157 [2] Orimo S, Fujii H. Appl Phys, 2001; 72A: 167 [3] Huot J, Liang G, Schulz R. Appl Phys, 2001; 72A: 187 [4] Chiaki I, Ryuji S, Keisuke M, Shinji N, Hiroshi I. Electrochem Acta, 2001; 46:2781 [5] Han S C, Lee P S, Lee J Y, Zuttel A, Schlabch L. J Alloys Compd, 2000; 306:219 [6] Goo H N, Jeong W T, Lee K S. J Power Source, 2000; 87: 118 [7] Liu F J, Suda S. J Alloys Compd, 1996; 232:212 [8] Wang C Y, Yao P, Bradhurst D H. J Alloys Compd, 1999; 285:267 [9] Luo J L, Cui N. J Alloys Compd, 1998; 264:299 [10] Zaluska A, Zaiuski L. J Alloys Compd, 1999; 288:217 [11] Liang G, Huot J, Boily S, van Neste A, Schulz R. J Alloys Compd, 1999; 292:247 [12] Song M Y, Bobet J-L, Darriet B. J Alloys Compd, 2002; 340:256 [13] Zhu W H, Zhu M, Luo K C, Che X Z. Acta Metall Sin, 1999: 35:541(朱文辉,朱敏,罗堪昌,车晓舟.金属学报,1999;35:541) [14] Terzieva M, Khrussanova M, Peshev P. J Alloys Compd, 1998; 267: 235 [15] Zhu M, Gao Y, Che X Z, Yang Y Q, Chang C Y. J Atloys Compd, 2001; 17:708 [16] Wang Z M, Peng C H, Ouyang L Z, Li Z X, Zhu M. Acta Metall Sin, 2002; 38:189(王仲民,彭成红,欧阳柳章,李祖鑫,朱敏.金属学报,2002;38:189) [17] Zaluski L, Zaluska A. J Alloys Compd, 1995; 217:245 [18] Chiaki I. J Alloys Compd, 1999; 285:246 [19] Lei Y Q, Wu Y M, Yang Q M, Wu J, Wang Q D. Z Phys Chem, 1994; 183:379 [20] Zhu M, Gao Y, Che X Z, Yang Y Q, Chang C Y. J Alloys Compd, 2002; 330-332:708 [21] Higuchi K, Yamamoto K, Kajioka H, Toiyama K, Honda M, Orimo S, Fujii H. J Alloys Compd, 2002; 330-332:526 [22] Huot J, Liang G, Boily S, van Neste A. Schulz R. J Alloys Compd, 1999; 293-295:495 [23] Fujii H, Orimo S, Ikeda K. J Alloys Compd, 1997; 253-254:80 [24] Orimo S, Fujii H. Appl Phys, 2001; 72A: 167 [25] Zaluska A, Zaiuski L, Strom-Olsen J O. J Alloys Compd, 1999: 253-254:70 [26] Zaluska A, Zaiuski L. J Alloys Compd, 1999; 288:217 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|