Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 459-462     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(3)
Cite this article: 

. Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(3). Acta Metall Sin, 2006, 42(5): 459-462 .

Download:  PDF(1055KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Abstract. RP/M is an advance technology based on build-up and discrete idea, and Laser direct deposition by coaxially feeding the powders to laser melting pool is a RM technology in general use. It is a major attention problem in the researches on this technology that the distortion occurring in the depositing process, particularly in the substrate. The characteristics on the substrate distortion and “Christmas tree step” occurring in the depositing process of vertical thin wall samples of 316L stainless steel are analyzed by use of results simulating the thermal stress field in this paper. The analysis results have explained that varied temperature field and dissimilar temperature of melted pool at the position of the start point and end point of laser scanning paths cause the “Christmas tree step”. The distortion of the substrate only occur in the region on which 316L stainless steel have been deposited, and there is the rigidity displacement at the left end and right end. It has demonstrated the finite element models simulating the temperature field and the thermal stress field that the test results to measure the rigidity displacement are agreement with simulating results of finite element.
Key words:  Laser direct deposition      Metallic Vertical thin wall samples      Distortion of substrate      Finite Element S     
Received:  16 September 2005     
ZTFLH:  TG142  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/459

[1] Hofmeister W H, Bayuzick R J, Robinson M B. Int J Thermophys, 2000; 10(1): 279
[2] Jendrzejewski R, Kreja I, Sliwiriski G. Mater Sci Eng, 2004; A379: 313
[3] Hu D, Kovacevic R S. Int J Mach Tool Manuf, 2003; 43: 51
[4] Toyserkani E, Khajepour A, Corbin S. Opt Laser Eng, 2004; 41: 849
[5] Brockmann R, Dickmann K. Opt Laser Technol, 2003; 35: 115
[6] Hofmeister W, Griffith M, Ensz M, Smugeresky J. JOM, 2001; 53(9): 30
[7] Shawn M K. Master Thesis. Virginia Polytechnic Institute and State University, 2002
[8] Nickel A H. PhD Thesis, Stanford University, 1999
[9] Nickel A H, Barnett D M, Prinz F B. Mater Sci Eng, 2001; A317: 59
[10] Labudovic M, Hu D, Kovacevic R. J Mater Sci, 2003; 38: 35
[11] Shen Z H, Zhang S Y. Opt Laser Technol, 2001; 33: 533
[12] Dai K, Shaw L. Acta Mater, 2004; 52: 69
[13] Shi L K, Gao S Y, Xi M Z, Ji H Z, Zhang Y Z, Du B L. Acta Ueiall Sin, 2006; 42: 449 (石力开,高士友,席明哲,纪宏志,张永忠,杜宝亮.金属学 报,2006;42:449)
[14] Shi L K, Gao S Y, Xi M Z, Ji H Z, Zhang Y Z, Du B L. Acta Metall Sin, 2006; 42: 454 (石力开,高士友,席明哲,纪宏志,张永忠,杜宝亮.金属学 报,2006;42:454)
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[4] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[5] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[6] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[7] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[8] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[9] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[10] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[11] XU Jiayu CHEN Hongtao LI Mingyu. STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION[J]. 金属学报, 2012, 48(9): 1042-1048.
[12] WU Bo WEI Yueguang TAN Jiansong WANG Jianping. NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni[J]. 金属学报, 2009, 45(9): 1077-1082.
[13] SHI Yanke ZHANG Keshi HU Guijuan. SUBSEQUENT YIELD AND PLASTIC FLOW ANALYSIS OF POLYCRYSTALLINE COPPER UNDER BIAXIAL LOADING[J]. 金属学报, 2009, 45(11): 1370-1377.
[14] Guo-Dong ZHANG. Finite Element Simulation for Welding Residual Stress and Creep Damage of Welded Joint[J]. 金属学报, 2008, 44(7): 848-852 .
[15] . Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)[J]. 金属学报, 2006, 42(5): 449-453 .
No Suggested Reading articles found!