Research Progress on Zero Thermal Expansion Metallic Materials
SONG Yuzhu1(), ZHANG Jimin1, ZHOU Chang2, SHI Naike1, CHEN Jun1()
1 Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
SONG Yuzhu, ZHANG Jimin, ZHOU Chang, SHI Naike, CHEN Jun. Research Progress on Zero Thermal Expansion Metallic Materials. Acta Metall Sin, 2025, 61(6): 809-825.
With the advancement of technology, the exploration of space, oceans, and underground resources continues to deepen. An ever-increasing demand for devices that operate under extreme conditions propels the need for the precise control of the thermal expansion properties of the materials used. Zero thermal expansion metals exhibit constant dimensions despite temperature variations, a unique feature that imparts these metals a significant application value in high-precision and high-stability devices. This article summarizes the research progress on zero thermal expansion metals since the discovery of Invar alloy over a century ago. It provides an overview of the definition, classification, and historical development of zero thermal expansion metals. Furthermore, this article introduces several main mechanisms inducing zero thermal expansion in metals and highlights several categories of metals with excellent zero thermal expansion properties and high application value. Moreover, it discusses the crystal structures, zero thermal expansion properties, and methods for controlling the thermal expansion properties of different types of metals. The coupling relationship between the magnetism, phase transitions, and thermal expansion properties is explored. Finally, the article provides a perspective on future trends in the development of zero thermal expansion metals.
Fund: National Key Research and Development Program of China(2022YFE0109100);National Natural Science Foundation of China(22275014);National Natural Science Foundation of China(12104038);Beijing Outstanding Young Scientist Program(JWZQ20240101015)
Corresponding Authors:
SONG Yuzhu, associate professor, Tel: (010)62332265, E-mail: yuzhusong@ustb.edu.cn; CHEN Jun, professor, Tel: (010)62332265, E-mail: junchen@ustb.edu.cn
Fig.1 Zero thermal expansion (ZTE) of metallic materials, originates from the mutual cancellation between the positive contribution to volume (ΔV2) from lattice vibrations and the negative contributions to volume (ΔV1) from magnetovolume efect, martensitic phase transitions, or valence state changes (TC—Curie temperature)
Fig.2 Volume (showed by numbers) decreases of the Invar alloy as the ferromagnetic ordered magnetic structure transitions to a disordered paramagnetic structure[9]
Material
Type
αl / (10-6 K-1)
Temp. range / K
Ref.
Fe0.65Ni0.35
Invar
1.5
193-373
[17]
Zr0.8Nb0.2Fe2
AFe2
1.4
3-470
[18]
(Zr0.65Nb0.35)0.95Fe0.05Fe2
0.47
4-425
[19]
Zr0.8Ta0.2Fe1.7Co0.3
0.21
100-360
[20]
Zr0.7Ta0.3Fe2
0.9
10-430
[21]
Sc0.55Ti0.45Fe2
0.41a
10-250
[22]
Sc0.725Nb0.275Fe2
0.69
108-264
[23]
HfFe2.5
0.42a
433-583
[24]
Hf0.8Nb0.2Fe2.5
0.06a
250-380
[25]
Hf0.6Ti0.4Fe2.5
0.53a
100-450
[26]
Hf0.85Ta0.15Fe2C0.01
0.8a
85-245
[27]
Tb(Co1.9Fe0.1)
RCo2
0.48
123-307
[28]
Gd0.25Dy0.75Co1.93Fe0.07
0.16
10-275
[29]
Gd0.5(Ho0.5Dy0.5)0.5Co2
1.3
5-220
[30]
LaFe11.0Si2.0 hydride
La(Fe, M)13
0.5
20-275
[31]
LaFe10.3Al2.7
0.36
4.2-250
[32]
LaFe10.6Si2.4
-0.8
15-150
[33]
Ho2Fe16Co
R2Fe17
0.07a
3-461
[34]
Ho2Fe16Cr
0.43a
13-330
[35]
Er2(Fe0.95Co0.05)14B
R2Fe14B
0.5a
120-475
[36]
MnCoGe0.99In0.01
MnCoGe
0.68
200-310
[37]
ErFe10V1.4Mo0.6
RFe12
1.6
120-440
[38]
MnFe4Si3
Mn5Si3
0.45b
10-310
[39]
Ni49.4Ti50.6
Ti-based
0.53b
123-353
[40]
Ni50.8Ti49.2
2.3b
77-300
[41]
Ti22Nb
0.2b
273-573
[42]
xLFCS/39.7%Cu (volume fraction)
Duplex alloy
-0.21
200-320
[43]
LaFe54Co3.5Si3.35
1.10
260-310
[14]
Ho0.04Fe0.96
0.19b
100-335
[15]
LaFe10.1Cu0.5Si2.4
0.28
185-250
[44]
Er2Fe19B1.35
0.28
100-500
[16]
Fe2.75Co0.25PtB0.25
0.95
360-560
[45]
Hf0.8Ta0.2Fe2.5
0.352
265-350
[46]
Table 1 Thermal expansion data of zero thermal expansion metallic materials[14-46]
Fig.3 Comparison of zero expansion temperature zone of different materials (Dashed line represents room temperature)
Fig.4 Calculated spin configurations at Fe (orange) and Ni (blue) atoms in fully ordered ferromagnetic states (0 K), ambient states, and paramagnetic states (The size of the arrow is proportional to the calculated magnetic moment)[48] (a), the relationship between the magnetization of Invar alloy and the pressure (P)[48] (b), comparison of linear expansion of Invar alloy, Fe, Cu and Al (Δl / l0—relative length variation) (c), change of phonon entropy and magnetic entropy of Invar alloy with pressure (Sph—phonon entropy; ΔSmag—magnetic entropy change)[48] (d), and change of the sum of phonon entropy and magnetic entropy (ΔSph—phonon entropy change)[48] (e)
Fig.5 Zero thermal expansion properties of AFe2 (A = Zr, Nb, Hf, Ta, Sc, and Ti) systems[18,19,21,22,24,26] (a) comparison of macroscopic linear expansion of Zr0.8Nb0.2Fe2, Fe0.64Ni0.36, and Fe[18] (b) temperature dependence of cell parameters for neutron diffraction and synchrotron radiation analysis of (Zr0.65Nb0.35)0.95Fe0.05Fe2 (ZNFF)[19] (SXRD—synchrotron X-ray diffraction, NPD—neutron powder diffraction, a—cell parameter, αa —thermal expansion coefficient of crystal in a-axis direction) (c) variation of cell parameters of Zr0.7Ta0.3Fe2 with temperature (Δa—change of a,ZTE—zero thermal expansion, FM—ferromagnetic, AFM—antiferromagnetic)[21] (d) relative cell volume of (Sc, Ti)Fe2 varies with temperature when x = 0 (PTE—positive thermal expansion), x = 0.45 (ZTE), and x = 0.6 (NTE—negative thermal expansion)[22] (ΔV / V—relative cell volume variation; CMVE—traditional magnetic volume effect; UMVE—unconventional magnetic volume effect) (e) temperature dependence of unit cell volumes for HfFe2 + δ (δ = 0.3, 0.5, and 0.6)[24] (LTE—low thermal expansion) (f) dilatometer thermal expansion of TiFe2 and Hf0.6Ti0.4Fe2 + x (x = 0, 0.5, and 1.3)[26]
Fig.6 Magnetic structure, crystal structure, and thermal expansion regulation of RCo2 (R = Tb, Gd, and Dy) systems[28,29] (a) crystal and magnetic structures of Tb(Co1.9Fe0.1) intermetallic compound at 10 K[28] (b) Tb(Co1 - x Fe x)2 macroscopic linear expansion curves[28] (c) comparison of intrinsic volume expansion and macroscopic linear expansion[28] (d) crystal structure of Gd0.25Dy0.75Co1.93Fe0.07 (GDCF)[29] (e) linear thermal expansion of Gd x Dy1 - x Co2 and GDCF (Inset shows Δl / l0 of GdCo2 (x = 1) in the high temperature region)[29]
Fig.7 Thermal expansion properties and macroscopic magnetic properties of La(Fe, M)13 (M = Si, Al) type metal materials[31,32] (a, b) thermal expansions of LaFe13 - x Si x (x = 1.5, 2.0, 2.4) (a) and LaFe13 - x Si x hydrides (x = 1.5, 2.0, 2.4) (b)[31] (Δa / a300 K—rate of change of cell parameter relative to 300 K, ΔT—temperature difference) (c, d) macroscopic magnetisms of LaFe13 - x Si x (c) and LaFe13 - x Si x hydrides (d)[31] (Inset in Fig.7d shows the TC curves for original and hydrogenated LaFe13 - x Si x sample) (e) thermal expansion of LaFe13 - x Al x (x = 2.5, 2.7)[32] (SS304—304 stainless steel, ΔL / L(300 K)—linear thermal expansion reative to 300 K) (f) macroscopic magnetism of LaFe13 - x Al x (x = 1.8, 1.9, 2.1, 2.3, 2.5, 2.7)[32] (PM—paramagnetic)
Fig.8 Thermal expansion properties of Ho2(Fe, Co)17 and its regulation mechanism[34] (a) volumetric thermal expansion of Ho2(Fe, Co)17 (ΔV—relative volume variation, SIV—super Invar) (b) stability of zero expansion of Ho2Fe16Co (ΔT1—100-208 K, ΔT2—208-377 K, ΔT3—377-416 K) (c, d) magnetic ordered densities of state (DOS) of Ho2Fe17 (c) and Ho2Fe15Co2 (d) (E—electronic energy level, FIM—ferrimagnetic, DLM—disordered local moment) (e) changes of Fe magnetic moment and cell volume (V) of Ho2Fe16Co at 6g (MFe/Co—magnetic moment of Fe/Co atoms, T—temperature, μB—Bohr magnetron) (f) contribution of the magnetic moment (MFe) and magnetic order of the Fe sublattice to the cell volume (VM) (VM(T)—contribution of magnetic ordering to the unit cell volume, |Σ MFe|—magnetic moment of Fe sublattice. Inset in Fig.8f shows the |Σ MFe| as a function of Co content)
Fig.9 Anisotropic thermal expansion and cyclic properties of titanium-based shape memory alloys[40-42] (a) evolution of macroscopic strain with temperature of rolled 60% (thickness reduction rate) Ti50.6Ni49.4 alloy sheet along RD, 22.5°, 33.5°, 45°, 67.5°, and TD after annealing for 60 min at 523 K[40] (RD—rolling direction, TD—transverse direction) (b) Ni50.8Ti49.2 alloy through three steps rolling (CroR-15%-10%-5%: the thickness of the first rolling direction is reduced by 15%-the thickness in the vertical direction from the first rolling direction is reduced by 10%-thickness is reduced by 5% along the first rolling direction) to a thickness of 30% of the total thickness after the internal macroscopic thermal expansion change[41] (CroR—cross rolling, TE—thermal expansion) (c) Ti22Nb CR (cold-rolled) plate along the rolling direction in eight cycles (cycle 01 Tmax (maximum temperature) = 350 oC, thermomechanical analyzer measurements were performed in cycle 02-08 at Tmax = 300 oC)[42] (Inset shows the transmission Kikuchi diffraction (TKD) band contrast (BC) + inverse pole figure (IPF) map inside a primary martensite lath in the sample heating to 350 oC)
Fig.10 Multi-component reinforcement designs and thermal expansion performances of xLFCS/Cu metal matrix composites (a, b) enhanced metal matrix composites (MMC) with a single NTE material (a) and a multi-component NTE material (b) (c, d) linear thermal expansions of LaFe10.5Co1.0Si1.5 (c), and six compositions of LaFe11.5 - x Co x Si1.5 (dashed line) and xLFCS (solid line) (d) (e, f) MMC reinforced with a single NTE material (e) and a multi-component NTE material (f)
Fig.11 Thermal expansion control of different biphase alloy systems[14-16,45,94] (a) zero thermal expansion dual-phase alloy obtained by synergistic combination of negative thermal expansion L phase (La(Fe, Co, Si)13) and positive thermal expansion α phase (α-(Fe, Co, Si)) (αCalc.—calculated S-3 ZTE (empty circle point line) is derived from L-phase and α phase thermal expansions)[14] (b) thermal expansion behavior of LaFe0.939x Co0.061x Si0.0583x (x = 37.5, 47.5, 57.5, and 67.5, designated as S-1, S-2, S-3, and S-4, respectively)[14] (c) macroscopic linear expansion of samples labeled S-3 (x = 0.03) to S-9 (x = 0.09) in Ho x Fe1 - x with x = 0.03, 0.04, 0.05, 0.07, and 0.09[15] (d) linear thermal expansion curves of samples in (LaFe10.8CoSi1.2)100 - y -Cu y alloys where y = 0, 15, 25, 35, and 45[94] (e) thermal expansion of Er2Fe14 + x B1 + 0.07x alloy compared to pure iron[16] (f) cyclic thermal expansion properties of Fe2.85Mn0.15PtB0.25[45]
1
Zhao C Z, Wang X, Li Z, et al. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials [J]. Acta Mater. Compositae Sin., 2024, 41: 4589
van Schilfgaarde M, Abrikosov I A, Johansson B. Origin of the Invar effect in iron-nickel alloys [J]. Nature, 1999, 400: 46
10
Zhao Y Y, Hu F X, Bao L F, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure [J]. J. Am. Chem. Soc., 2015, 137: 1746
11
Shen F R, Zhou H B, Hu FX, et al. Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds [J]. Mater. Horizons, 2020, 7: 804
12
Azuma M, Chen W T, Seki H, et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer [J]. Nat. Commun., 2011, 2: 347
13
Long Y W, Hayashi N, Saito T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458: 60
14
Yu C Y, Lin K, Zhang Q H, et al. An isotropic zero thermal expansion alloy with super-high toughness [J]. Nat. Commun., 2024, 15: 2252
doi: 10.1038/s41467-024-46613-0
pmid: 38480744
15
Yu C Y, Lin K, Jiang S H, et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite [J]. Nat. Commun., 2021, 12: 4701
doi: 10.1038/s41467-021-25036-1
pmid: 34349119
16
Yu C Y, Lin K, Chen X, et al. Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction [J]. Nat. Commun., 2023, 14: 3135
doi: 10.1038/s41467-023-38929-0
pmid: 37253768
17
Guillaume C É. Recherches sur les aciers au nickel [J]. J. Phys. Theor. Appl., 1898, 7: 262
18
Song Y Z, Sun Q, Yokoyama T, et al. Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2 [J]. J. Phys. Chem. Lett., 2020, 11: 1954
19
Sun Y M, Cao Y L, Hu S X, et al. Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr, Nb)Fe2 [J]. J. Am. Chem. Soc., 2023, 145: 17096
20
Li W J, Lin K, Yan Y, et al. A seawater‐corrosion‐resistant and isotropic zero thermal expansion (Zr, Ta)(Fe, Co)2 alloy [J]. Adv. Mater., 2022, 34: 2109592
21
Cao Y L, Xu Y, Khmelevskyi S, et al. Interplanar magnetic orders and symmetry-tuned zero thermal expansion in kagomé metal (Zr,Ta)Fe2 [J]. Chem. Mater., 2023, 35: 9167
22
Song Y Z, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect [J]. Mater. Horizons, 2020, 7: 275
23
Jing-Ting Z, Yibole H, Narsu B, et al. Structural and magnetic properties of Sc1 - x Nb x Fe2 intermetallics showing anomalous zero thermal expansion [J]. Intermetallics, 2021, 136: 107252
24
Xu M, Song Y Z, Xu Y J, et al. High-temperature zero thermal expansion in HfFe2 + δ from added ferromagnetic paths [J]. Chem. Mater., 2022, 34: 9437
25
Dong X Y, Lin K, Yu C Y, et al. Zero thermal expansion in non-stoichiometric and single-phase (Hf, Nb) Fe2.5 alloy [J]. Scr. Mater., 2023, 229: 115388
26
Lin K, Zhang W B, Yu C Y, et al. Chemical heterogeneity modulated zero thermal expansion alloy over super-wide temperature range [J]. Cell Rep. Phys. Sci., 2023, 4: 101254
27
Xu J W, Wang Z, Huang H, et al. Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets [J]. Adv. Mater., 2023, 35: 2208635
28
Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602
29
Hu J Y, Lin K, Cao Y L, et al. Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCo2-based intermetallic compounds (R = rare earth) [J]. Inorg. Chem., 2019, 58: 5401
30
Hao J Z, Shen F R, Hu F X, et al. Realization of ultra-low thermal expansion over a broad temperature interval in Gd x (Dy0.5Ho0.5)1 - x -Co2 compounds [J]. Scr. Mater., 2020, 185: 181
31
Li S P, Huang R J, Zhao Y Q, et al. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds [J]. Adv. Funct. Mater., 2017, 27: 1604195
32
Li W, Huang R J, Wang W, et al. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe, Al)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 5556
33
Wang W, Huang R J, Li W, et al. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 2352
doi: 10.1039/c4cp04672b
pmid: 25503989
34
Cao Y L, Lin K, Khmelevskyi S, et al. Ultrawide temperature range super-Invar behavior of R2(Fe,Co)17 materials (R = rare earth) [J]. Phys. Rev. Lett., 2021, 127: 055501
35
Dan S, Mukherjee S, Mazumdar C, et al. Zero thermal expansion with high Curie temperature in Ho2Fe16Cr alloy [J]. RSC Adv., 2016, 6: 94809
36
Qiao Y Q, Song Y Z, Xu M, et al. Controllable thermal expansion and magnetic structure in Er2(Fe, Co)14B intermetallic compounds [J]. Inorg. Chem. Front., 2019, 6: 3225
37
Shen F R, Kuang H, Hu F X, et al. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation [J]. APL Mater., 2017, 5: 106102
38
Li W J, Lin K, Cao Y L, et al. Strong coupling of magnetism and lattice induces near-zero thermal expansion over broad temperature windows in ErFe10V2 - x Mo x Compounds [J]. CCS Chem., 2021, 3: 1009
39
Yu C Y, Lin K, Cao Y L, et al. Two-dimensional zero thermal expansion in low-cost Mn x Fe5 - x Si3 alloys via integrating crystallographic texture and magneto-volume effect [J]. Sci. China Mater., 2022, 65: 1912
40
Ahadi A, Matsushita Y, Sawaguchi T, et al. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy [J]. Acta Mater., 2017, 124: 79
41
Li Q, Deng Z Z, Onuki Y, et al. In-plane low thermal expansion of NiTi via controlled cross rolling [J]. Acta Mater., 2021, 204: 116506
42
Wang H L, Lai D K Z, Xu J P, et al. Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb [J]. Scr. Mater., 2021, 205: 114222
43
Pang X L, Song Y Z, Shi N K, et al. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites [J]. Composites, 2022, 238B: 109883
44
Liu J, Gong Y Y, Wang J W, et al. Realization of zero thermal expansion in La(Fe, Si)13-based system with high mechanical stability [J]. Mater. Des., 2018, 148: 71
45
Cui J, Sun Y, Shi K W, et al. Invar effect in the wide and higher temperature range by coherent coupling in Fe-based alloy [J]. Adv. Funct. Mater., 2024, 34: 2309431
46
Cen D Y, Wang B, Chu R X, et al. Design of (Hf,Ta)Fe2/Fe composite with zero thermal expansion covering room temperature [J]. Scr. Mater., 2020, 186: 331
47
Weiss R J. The origin of the ‘Invar’ effect [J]. Proc. Phys. Soc., 1963, 82: 281
48
Lohaus S H, Heine M, Guzman P, et al. A thermodynamic explanation of the Invar effect [J]. Nat. Phys., 2023, 19: 1642
49
Khmelevskyi S, Turek I, Mohn P. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect [J]. Phys. Rev. Lett., 2003, 91: 037201
50
Matsui M, Shimizu T, Yamada H, et al. Magnetic properties and thermal expansion of Fe-Pd Invar alloys [J]. J. Magn. Magn. Mater., 1980, 15-18: 1201
51
Rode V E, Finkelberg S A, Lyalin A I, et al. Invar anomalies of Fe-Cr alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 293
52
Nishihara Y, Yamaguchi Y. Magnetic properties of the (Sc1 - x Ti x)-Fe2 system having two magnetic states with different degrees of localization [J]. J. Phys. Soc. Jpn., 1986, 55: 920
53
Li L F, Tong P, Zou Y M, et al. Good comprehensive performance of Laves phase Hf1 - x Ta x Fe2 as negative thermal expansion materials [J]. Acta Mater., 2018, 161: 258
54
Qiao Y Q, Song Y Z, Lin K, et al. Negative thermal expansion in (Hf, Ti)Fe2 induced by the ferromagnetic and antiferromagnetic phase coexistence [J]. Inorg. Chem., 2019, 58: 5380
55
Song Y Z, Chen J, Liu X Z, et al. Structure, magnetism, and tunable negative thermal expansion in (Hf,Nb)Fe2 alloys [J]. Chem. Mater., 2017, 29: 7078
56
Shiga M, Nakamura Y. Magnetovolume effects and Invar characters of (Zr1 - x Nb x)Fe2 [J]. J. Phys. Soc. Jpn., 1979, 47: 1446
57
Muraoka Y, Okuda H, Shiga M, et al. Magnetovolume effects in Gd x Y1 - x Co2 [J]. J. Phys. Soc. Jpn., 1984, 53: 331
58
Gratz E, Markosyan A S. Physical properties of RCo2 Laves phases [J]. J. Phys., 2001, 13: R385
59
von Ranke P J, de Oliveira N A. On the nature of the magnetic phase transition of the HoCo2 intermetallic [J]. J. Appl. Phys., 1998, 83: 6967
60
Morrison K, Dupas A, Mudryk Y, et al. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements [J]. Phys. Rev., 2013, 87B: 134421
61
Lizárraga R. Structural and magnetic properties of the Gd-based bulk metallic glasses GdFe2, GdCo2, and GdNi2 from first principles [J]. Phys. Rev., 2016, 94B: 174201
62
Huang R J, Liu Y Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds [J]. J. Am. Chem. Soc., 2013, 135: 11469
63
Song Y Z, Huang R J, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe, Al)13 [J]. Chem. Mater., 2020, 32: 7535
64
Shen B G, Hu F X, Dong Q Y, et al. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds [J]. Chin. Phys., 2013, 22B: 017502
65
Long F X, Song Y Z, Chen J. La(Fe, Si/Al)13-based materials with exceptional magnetic functionalities: A review [J]. Microstructures, 2024, 4: 2024011
66
Cao Y L, Zhou H W, Khmelevskyi S, et al. Pressure-modulated magnetism and negative thermal expansion in the Ho2Fe17 intermetallic compound [J]. Chem. Mater., 2023, 35: 3249
67
Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10: 109
68
Cao Y L, Lin K, Liu Z N, et al. Zero thermal expansion and its mechanism of Ho2Fe11Al6 intermetallic compounds at low temperature [J]. J. Chin. Soc. Rare Earths, 2020, 38: 440
Buschow K H J, Grössinger R. Spontaneous volume magnetostriction in R2Fe14B compounds [J]. J. Less Common Met., 1987, 135: 39
70
Cheng B P, Yang Y C, Fu S C, et al. Thermal expansion anomalies of R2(Fe1 - x M x)14B [J]. J. Appl. Phys., 1987, 61: 3586
71
Loewenhaupt M, Prager M, Murani A P, et al. Inelastic neutron scattering on RE2Fe14B (RE = Y, Ce, Nd, Dy and Er) [J]. J. Magn. Magn. Mater., 1988, 76: 408
72
Yang S, Ma S C, Liu K, et al. Controllable negative thermal expansion by mechanical pulverizing in hexagonal Mn0.965Co1.035Ge compounds [J]. Inorg. Chem., 2018, 57: 14199
73
Ren Q Y, Hutchison W, Wang J L, et al. Negative thermal expansion of Ni-doped MnCoGe at room-temperature magnetic tuning [J]. ACS Appl. Mater. Interfaces, 2019, 11: 17531
74
Liu Y, Qiao K M, Zuo S L, et al. Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films [J]. Appl. Phys. Lett., 2018, 112: 012401
75
Liu E K, Wang W H, Feng L, et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets [J]. Nat. Commun., 2012, 3: 873
doi: 10.1038/ncomms1868
pmid: 22643900
76
Caron L, Trung N T, Brück E, et al. Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe [J]. Phys. Rev., 2011, 84B: 020414
77
Wu R R, Bao L F, Hu F X, et al. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature [J]. Sci. Rep., 2015, 5: 18027
78
Sun X M, Cong D Y, Ren Y, et al. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys [J]. Appl. Phys. Lett., 2018, 113: 041903
79
Coates C S, Goodwin A L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? [J]. Mater. Horizons, 2019, 6: 211
80
Xu J H, Liu X M, Xia Y H, et al. Magnetic properties and magnetocaloric effect of (Mn1 - x Fe x)5Sn3 (x = 0-0.5) compounds [J]. J. Appl. Phys., 2013, 113: 17A921
81
Sürgers C, Kittler W, Wolf T, et al. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3 [J]. AIP Adv., 2016, 6: 055604
82
Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348
83
Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423
84
Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
pmid: 12702870
85
Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874
86
Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313
87
Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
88
Bönisch M, Panigrahi A, Stoica M, et al. Giant thermal expansion and α-precipitation pathways in Ti-alloys [J]. Nat. Commun., 2017, 8: 1429
89
Demakov S, Semkina I, Stepanov S I. Abnormal behavior of lattice spacing of titanium orthorhombic martensite [J]. Mater. Sci. Forum, 2017, 907: 14
90
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940
pmid: 36201584
91
Zhao Y Q, Huang R J, Shan Y, et al. Low-temperature abnormal thermal expansion property of Mn doped cubic NaZn13-type La(Fe, Al)13 compounds [J]. J. Phys., 2017, 897: 012005
92
Sun B H, Lu W J, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels [J]. Nat. Mater., 2021, 20: 1629
doi: 10.1038/s41563-021-01050-y
pmid: 34239084
93
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
94
Liu Y, Li J, Qian Y, et al. Isotropic negative thermal expansion in the multiple-phase La-Fe-Co-Si-Cu alloys with enhanced strength and ductility [J]. Acta Mater., 2024, 275: 120058
95
Kakeshita T, Takeuchi T, Fukuda T, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation [J]. Appl. Phys. Lett., 2000, 77: 1502
96
Li Q, Ren Y, Zhang Q H, et al. Chemical order-disorder nanodomains in Fe3Pt bulk alloy [J]. Natl. Sci. Rev., 2022, 9: nwac053
97
Rechenberg H R, Morellon L, Algarabel P A, et al. Magnetic moment at highly frustrated sites of antiferromagnetic Laves phase structures [J]. Phys. Rev., 2005, 71B: 104412
98
Diop L V B, Isnard O, Suard E, et al. Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound [J]. Solid State Commun., 2016, 229: 16