Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (10): 1531-1541    DOI: 10.11900/0412.1961.2024.00031
Research paper Current Issue | Archive | Adv Search |
Hardness and Microstructural Evolution of Lower Bainite and Martensite Mixtures on Tempering of High-Strength Low-Alloy Steel Plates
JU Yulin1(), WEI Qi2, YUAN Zhizhong1, CHENG Xiaonong1
1 College of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2 Aviation Key Laboratory of Science and Technology on Advanced Surface Engineering/ Science and Technology on Power Beam Process Laboratory, AVIC Manufacturing Technology Institute, Beijing 100024, China
Cite this article: 

JU Yulin, WEI Qi, YUAN Zhizhong, CHENG Xiaonong. Hardness and Microstructural Evolution of Lower Bainite and Martensite Mixtures on Tempering of High-Strength Low-Alloy Steel Plates. Acta Metall Sin, 2025, 61(10): 1531-1541.

Download:  HTML  PDF(4821KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Variations in lower bainite and martensite phase configurations through thickness play an important role in achieving an optimum combination of strength and toughness for thick high-strength low-alloy (HSLA) steel plates. A comprehensive understanding of the hardness and microstructural evolution of tempered lower bainite and martensite (LB/M) mixtures contributes to the adjustment of the quenching and tempering parameters to further control HSLA plate deformation during manufacturing. Therefore, this study focused on the tempering behavior of the mixed LB/M microstructure and compared this behavior with those of the singular martensite and lower bainite phases. Results have shown that the hardness of LB/M microstructures follows the rule of mixtures. Hardness declines from singular martensite to the LB/M microstructure and further decreases to singular lower bainite during short-term tempering, whereas an opposite hardness decreasing trend is observed during long-term tempering. Carbide coarsening leads to a decrease in hardness during short-term tempering, where the coarsening of martensitic and lower bainitic carbides in the LB/M microstructure is consistent with that of singular martensitic and bainitic carbides. Furthermore, the coarsening of laths and carbides in the LB/M mixture is similar to that in the singular lower bainitic microstructure for long-term tempering, where lower bainitic carbides are more stable than martensitic carbides.

Key words:  HSLA steel plate      the mixed lower bainite and martensite microstructure      tempered hardness      microstructural evolution      precipitation and coarsening of carbide     
Received:  29 January 2024     
ZTFLH:  TG156  
Fund: National Natural Science Foundation of China(52203379)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00031     OR     https://www.ams.org.cn/EN/Y2025/V61/I10/1531

Fig.1  Dilation changes of samples on quenching and austempering processes
Fig.2  Hardness (H) variations against the volume fraction of lower bainite (LB) in the lower bainite/martensite (LB/M) microstructures on tempering at 600 oC up to 16 h (a), and hardness variations in the singular martensite (100%M), LB/M (56%M + 44%LB), and singular lower bainite (100%LB) microstructures upon temp-ering at 600 oC up to 100 h (b)
Fig.3  OM images of 100%M (a), LB/M (56%M + 44%LB) (b), and 100%LB (c) samples
Fig.4  SEM images of 100%LB (a), LB/M (56%M + 44%LB) (b), and 100%M (c) samples; and TEM image and selected area electron diffractin (SAED) pattern (inset) of the auto-tempered carbides within martensite in the LB/M microstructure, where the bright-field TEM image is from <001>α beam direction (Cementite and ε-carbide particles are along <011>α and <001>α, respectively) (d)
Fig.5  Martensitic lath size distributions in the 100%M and LB/M (56%M + 44%LB) samples (a), and bainitic carbide size distributions in the LB/M (56%M + 44%LB) and 100%LB samples (b)
Fig.6  SEM images of 100%M (a), LB/M (56%M + 44%LB) (b), and 100%LB (c) samples; and TEM image and SAED pattern (inset) of elliptical inter-lath cementite after tempering at 600 oC for 16 h (d)
Fig.7  Width (a) and length (b) distributions for martensitic carbides in the 100%M and LB/M (56%M + 44%LB) samples, and width (c) and length (d) distributions for bainitic carbides in the100%LB and LB/M (56%M + 44%LB) samples after tempering at 600 oC for 16 h
Fig.8  Morphologies of 100%M (a), LB/M (56%M + 44%LB) (b), and 100%LB (c) samples after tempering at 600 oC for 100 h
Fig.9  Lath size distribution for the 100% LB and LB/M (56%M + 44%LB) samples (a), and the carbide width (b) and length (c) distributions for the 100%M, LB/M (56%M + 44%LB), and 100%LB samples after tempering at 600 oC for 100 h
Fig.10  Morphologies and chemical compositions of coarser carbides in martensite (a-d) and bainite (e-h) after tempering at 600 oC for 100 h
(a, e) morphologies for martensitic carbides (a) and bainitic carbides (e) (b-d) Mn (b) and Mo (c) distributions in the selected area in Fig.10a and the carbide composition (d) (f-h) Mn (f) and Mo (g) distributions in the selected area in Fig.10e and the carbide composition (h)
XMartensitic carbideBainitic carbideParaequilibrium cementiteParaequilibrium M2C
Mn0.100.030.177.07
Mo0.050.020.0155.96
Table 1  Chemical composition ratios of X / Fe (X = Mn, Mo) in coarser martensitic and bainitic carbides
[1] Chang Y F, Wang Z B, Zhao W Z. Development trend of low alloy high strength heavy and wide plate [J]. Steel, 2007, 42(8): 1
常跃峰, 王祖滨, 赵文忠. 低合金高强度宽厚钢板的发展趋势 [J]. 钢铁, 2007, 42(8): 1
[2] Zhao J F, Min Y A, Wu X C, et al. Effect of heat treatment on strength and toughness of S890 high strength steel [J]. Trans. Mater. Heat Treat., 2015, 36(5): 129
赵洁璠, 闵永安, 吴晓春 等. 不同热处理工艺对S890高强钢强韧性的影响 [J]. 材料热处理学报, 2015, 36(5): 129
[3] Kang J, Lu F, Wang Z D, et al. Study on quenching process of 960 MPa quenched and tempered steel plates for construction machinery [J]. J. Northeast. Univ. (Nat. Sci.), 2011, 32: 52
康 健, 卢 峰, 王昭东 等. 工程机械用960MPa级调质钢板的淬火工艺研究 [J]. 东北大学学报(自然科学版), 2011, 32: 52
[4] Toji Y, Matsuda H, Raabe D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite [J]. Acta Mater., 2016, 116: 250
[5] Jiang Z H, Li Y H, Yang Z D, et al. The tempering behavior of martensite/austenite islands on the mechanical properties of a low alloy Mn-Ni-Mo steel with granular bainite [J]. Mater. Today Commun., 2021, 26: 102166
[6] Zhao Y T, Lu H T, Wang Y F, et al. Morphologies of martensite and bainite in different steels [J]. J. Iron Steel Res., 2018, 30: 922
赵勇桃, 鲁海涛, 王玉峰 等. 不同钢中马氏体与贝氏体组织形貌 [J]. 钢铁研究学报, 2018, 30: 922
doi: 10. 13228/j.boyuan.issn1001- 0963. 20180055
[7] Liu D Y, Xu H, Yang K, et al. Effect of bainite/martensite mixed microstructure on the strength and toughness of low carbon alloy steels [J]. Acta Metall. Sin., 2004, 40: 882
刘东雨, 徐 鸿, 杨 昆 等. 贝氏体/马氏体复相组织对低碳合金钢强韧性的影响 [J]. 金属学报, 2004, 40: 882
[8] Fang H S, Liu D Y, Chang K D, et al. Microstructure and properties of 1500 MPa economical bainite/martensite duplex phase steel [J]. J. Iron Steel Res., 2001, 13(3): 31
方鸿生, 刘东雨, 常开地 等. 1500 MPa级经济型贝氏体/马氏体复相钢的组织与性能 [J]. 钢铁研究学报, 2001, 13(3): 31
[9] Yuan Z Z, Chen L, Zhang B C, et al. Heat treatment technologies for toughening of cold working die steel DC53 [J]. Heat Treat. Met., 2023, 48(10): 15
袁志钟, 陈 露, 张伯承 等. 冷作模具钢DC53热处理增韧技术 [J]. 金属热处理, 2023, 48(10): 15
[10] Yuan Z Z, Wang M F, Zhang B C, et al. Heat treatment for toughening technology of cold working die steel SKD11 [J]. Heat Treat. Met., 2023, 48(9): 1
doi: 10.13251/j.issn.0254-6051.2023.09.001
袁志钟, 王梦飞, 张伯承 等. 冷作模具钢SKD11的热处理增韧技术 [J]. 金属热处理, 2023, 48(9): 1
doi: 10.13251/j.issn.0254-6051.2023.09.001
[11] Caballero F G, Miller M K, Garcia-Mateo C. Influence of transformation temperature on carbide precipitation sequence during lower bainite formation [J]. Mater. Chem. Phys., 2014, 146: 50
[12] Tomita Y. Effect of martensite morphology on mechanical properties of low alloy steels having mixed structure of martensite and lower bainite [J]. Mater. Sci. Tech., 1991, 7: 299
[13] Ju Y L, Goodall A, Strangwood M, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q&T steels during the early stages of tempering [J]. Mater. Sci. Eng., 2018, A738: 174
[14] Thomson R C, Bhadeshia H K D H. Changes in chemical composition of carbides in 2.25Cr-1Mo power plant steel [J]. Mater. Sci. Tech., 1994, 10: 193
[15] Thomson R C, Bhadeshia H K D H. Changes in chemical composition of carbides in 2.25Cr-1Mo power plant steel [J]. Mater. Sci. Tech., 1994, 10: 205
[16] Zhou L, Shen G X, Xu J. Study on the martensite and lower bainite composite structure of medium carbon low alloy steel [J]. Shanghai Met., 1988, 10(4): 36
周 莲, 沈国兴, 徐 杰. 中碳低合金钢的马氏体与下贝氏体复相组织研究 [J]. 上海金属, 1988, 10(4): 36
[17] Lin H C. Strengthening and toughening of Cr12 steel with martensite/bainite duplex treatment and its application [J]. Heat Treat. Met., 1997, (5): 11
林化春. Cr12钢马氏体-贝氏体复相处理强韧化及应用 [J]. 金属热处理, 1997, (5): 11
[18] Bhadeshia H K D H. Bainite in Steels: Theory and Practice [M]. 3rd Ed., London: CRC Press, 2015: 12
[19] Tomita Y, Okabayashi K. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel [J]. Metall. Trans., 1983, 14A: 2387
[20] Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite [J]. Metall. Trans., 1983, 14A: 485
[21] Yang F B, Bai B Z, Liu D Y, et al. Microstructure and properties of a carbide-free bainite/martensite ultra-high strength steel [J]. Acta Metall. Sin., 2004, 40: 296
杨福宝, 白秉哲, 刘东雨 等. 无碳化物贝氏体马氏体复相高强度钢的组织与性能 [J]. 金属学报, 2004, 40: 296
[22] Young C H, Bhadeshia H K D H. Strength of mixtures of bainite and martensite [J]. Mater. Sci. Tech., 1994, 10: 209
[23] Jain D, Isheim D, Seidman D N. Carbon redistribution and carbide precipitation in a high-strength low-carbon HSLA-115 steel studied on a nanoscale by atom probe tomography [J]. Metall. Mater. Trans., 2017, 4A: 3205
[24] Mishra S K, Das S, Ranganathan S. Precipitation in high strength low alloy (HSLA) steel: A TEM study [J]. Mater. Sci. Eng., 2002, A323: 285
[25] Ju Y L, Davis C, Strangwood M. Simulation of coarsening of inter-lath cementite in a Q&T steel during tempering [J]. Mater. Sci. Technol., 2020, 36: 1440
[26] Wang F, Qian D, Mao H, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9: 6712
[27] Li Y C, Cheng X N, Luo R, et al. Effect of thermal fatigue on microstructure and mechanical properties of B/M multiphase H13 steel. Heat Treat. Met., 2020, 45(8): 17
李洋城, 程晓农, 罗 锐 等. 热疲劳对B/M复相H13钢组织及力学性能的影响[J]. 金属热处理, 2020, 45(8): 17
[28] Ning D, Dai C R, Wu J L, et al. Carbide precipitation and coarsening kinetics in low carbon and low alloy steel during quenching and subsequently tempering [J]. Mater. Charact., 2021, 176: 111111
[29] Hou Z, Babu R P, Hedström P, et al. Early stages of cementite precipitation during tempering of 1C-1Cr martensitic steel [J]. J. Mater. Sci., 2019, 54: 9222
[30] Clarke A J, Miller M K, Field R D, et al. Atomic and nanoscale chemical and structural changes in quenched and tempered 4340 steel [J]. Acta Mater., 2014, 77: 17
[1] ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. 金属学报, 2025, 61(1): 177-190.
[2] DING Kuankuan, DING Jianxiang, ZHANG Kaige, BAI Zhongchen, ZHANG Peigen, SUN Zhengming. Micro/Nano-Mechanical Behavior and Microstructure Evolution of Eco-Friendly Ag/Ti2SnC Composite Electrical Contacts Under Multi-Field Coupled Erosion[J]. 金属学报, 2024, 60(12): 1731-1745.
[3] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[4] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[5] Junjun CUI,Liqing CHEN,Haizhi LI,Weiping TONG. TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON[J]. 金属学报, 2016, 52(7): 778-786.
[6] SUN Wen, QIN Xuezhi, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2015, 51(1): 67-76.
[7] SUN Wen, QIN Xuezhi, GUO Yongan, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF Nb/Ti RATIOS ON THE MICROSTRUCTURAL EVOLUTIONS OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2014, 50(6): 744-752.
[8] YUE Wu, QIN Hongbo, ZHOU Minbo, MA Xiao, ZHANG Xinping. INFLUENCE OF SOLDER JOINT CONFIGURATION ON ELECTROMIGRATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Cu/Sn-58Bi/Cu MICROSCALE JOINTS[J]. 金属学报, 2012, 48(6): 678-686.
[9] XIAO Xuan XU Hui QIN Xuezhi GUO Yongan GUO Jianting ZHOU Lanzhang. THERMAL FATIGUE BEHAVIORS OF THREE CAST NICKEL BASE SUPERALLOYS[J]. 金属学报, 2011, 47(9): 1129-1134.
[10] MAN Jiao ZHANG Jihua RONG Yonghua. THREE-DIMENSIONAL PHASE FIELD STUDY ON STRAIN SELF-ACCOMMODATION IN MARTENSTIC TRANSFORMATION[J]. 金属学报, 2010, 46(7): 775-780.
[11] HU Jing LIN Dongliang WANG Yan. EBSD ANALYSES OF THE MICROSTRUCTURAL EVOLUTION AND CSL CHARACTERISTIC GRAIN BOUNDARY OF COARSE--GRAINED NiAl ALLOY DURING PLASTIC DEFORMATION[J]. 金属学报, 2009, 45(6): 652-656.
[12] FANG Hongsheng; BO Xiangzheng; WANG Jiajun; XU Ning(Deperment of Materials Science & Engineering; Tsinghua University; Beijing 100084)Correspondent : BO Xiangzheag Fas:(010)62771160; Tel: (010)62782361;E-mail: fhsdms tsinghua edu .cn. THREE DIMENSIONAL MORPHOLOGY AND MICROSTRUCTURAL EVOLUTION OF BAINITE[J]. 金属学报, 1998, 34(6): 579-585.
No Suggested Reading articles found!