|
|
Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys |
WANG Jingjing1, YAO Zhihao1( ), ZHANG Peng1, ZHAO Jie1, ZHANG Mai1, WANG Lei2, DONG Jianxin1, CHEN Ying3 |
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.Department of Physics, University of Science and Technology Beijing, Beijing 100083, China 3.Fracture and Reliability Research Institute, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Japan |
|
Cite this article:
WANG Jingjing, YAO Zhihao, ZHANG Peng, ZHAO Jie, ZHANG Mai, WANG Lei, DONG Jianxin, CHEN Ying. Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys. Acta Metall Sin, 2024, 60(9): 1250-1264.
|
Abstract The existence of elemental S in nickle-based superalloys negatively impacts their performance. The oxide film at the interface of the nickle-based superalloy peels off during the service process, leading to the failure of the alloy. However, the influence mechanism of the elemental S on the interface of the matrix and the coating layer is yet to be studied. Herein, the influence mechanism of the elemental S on the nickle-based superalloy and NiAl coating was studied using the first-principle calculation, especially focusing on the S segregation phenomenon. The interface adhesion work, segregation energy, and interface charge of the pure and S-doped interfaces of Ni3Al/NiAl and NiAl/Al2O3 were analyzed. The calculated results show that the interfacial adhesion work of the system decreases when the elemental S is present, resulting in reduced interface stability; in these systems, the elemental S tends to segregate toward the interface. By analyzing various aspects of the interface electronic structures (such as differential charge density, Bader charge, electron localization function, and densities of states), it was found that the bonding near the interface was weakened in the system with the elemental S, thereby reducing the tightness of the local connection. The influence mechanism of the elemental S on the interfacial stability of the system was finally revealed.
|
Received: 01 December 2022
|
|
Fund: National Natural Science Foundation of China(51771017,52271087) |
Corresponding Authors:
YAO Zhihao, professor, Tel: 13671347055, E-mail: zhihaoyao@ustb.edu.cn
|
1 |
Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
|
|
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
|
2 |
Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
|
|
刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
|
3 |
Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
|
4 |
Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
|
5 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
|
6 |
Zhang T Y, Wu C, Xiong Z, et al. Research progress in materials and preparation techniques of thermal barrier coatings [J]. Laser Optoelectron. Prog., 2014, 51: 030004
|
|
张天佑, 吴 超, 熊 征 等. 热障涂层材料及其制备技术的研究进展 [J]. 激光与光电子学进展, 2014, 51: 030004
|
7 |
Xu H B, Gong S K, Liu F S. Recent development in materials design of thermal barrier coatings for gas turbine [J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(1): 7
|
|
徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究 [J]. 航空学报, 2000, 21(1): 7
|
8 |
Czech N, Fietzek H, Juez-Lorenzo M, et al. Studies of the bond-coat oxidation and phase structure of TBCs [J]. Surf. Coat. Technol., 1999, 113: 157
|
9 |
Zhang Z P, Zhang S Q, Wang D, et al. Effect of ppm level sulfur addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Foundry, 2019, 68: 232
|
|
张宗鹏, 张思倩, 王 栋 等. ppm级S对第二代抗热腐蚀镍基单晶高温合金恒温氧化行为的影响 [J]. 铸造, 2019, 68: 232
|
10 |
Walsh J M, Anderson N P. STP39061S Application of auger electron spectroscopy to the study of embrittlement in nickel [S]. West Conshohocken: ASTM E42, 1976: 58
|
11 |
Dong J X, Liu X B, Xie X S, et al. The segregation of sulfur and phosphorvs in nickel-base alloy 718 [J]. Acta Metall. Sin. (Eng. Lett.), 1997, 10: 510
|
12 |
Molins R, Rouzou I, Hou P. Chemical and morphological evolution of a (NiPt)Al bond coat [J]. Oxid. Met., 2006, 65: 263
|
13 |
Molins R, Hou P Y. Characterization of chemical and microstructural evolutions of a NiPtAl bondcoat during high temperature oxidation [J]. Surf. Coat. Technol., 2006, 201: 3841
|
14 |
Chieux M, Duhamel C, Molins R, et al. Sulfur localization in NiPtAl/superalloy systems after high temperature isothermal oxidation [J]. Oxid. Met., 2014, 81: 115
|
15 |
Ozfidan I, Chen K Y, Fu M. Effects of additives and impurity on the adhesive behavior of the NiAl(110)/Al2O3 (0001) interface: An ab initio study [J]. Metall. Mater. Trans., 2011, 42A: 4126
|
16 |
Chen Y, Yao Z H, Dong J X, et al. Molecular dynamics simulation of the γ′ phase deformation behaviour in nickel-based superalloys [J]. Mater. Sci. Technol., 2022, 38: 1439
|
17 |
Chen K, Zhao L R, Tse J S. Sulfur embrittlement on γ/γ' interface of Ni-base single crystal superalloys [J]. Acta Mater., 2003, 51: 1079
|
18 |
Fedorova E, Monceau D, Oquab D, et al. Characterisation of oxide scale adherence after the high temperature oxidation of nickel-based superalloys [J]. Mater. High Temp., 2012, 29: 243
|
19 |
Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
|
20 |
Vargas-Hernández R A. Bayesian optimization for calibrating and selecting hybrid-density functional models [J]. J. Phys. Chem., 2020, 124A: 4053
|
21 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
|
22 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
23 |
Eriş R, Akdeniz M V, Mekhrabov A O. Atomic size effect of alloying elements on the formation, evolution and strengthening of γ′-Ni3Al precipitates in Ni-based superalloys [J]. Intermetallics, 2019, 109: 37
|
24 |
Carling K M, Carter E A. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface [J]. Acta Mater., 2007, 55: 2791
|
25 |
Fiorentini V, Methfessel M. Extracting convergent surface energies from slab calculations [J]. J. Phys., 1996, 8: 6525
|
26 |
Huang M L, Wang C Y. First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics [J]. Chin. Phys., 2016, 25B:107104
|
27 |
Zhu C X, Yu T, Wang C Y, et al. First-principles study of Ni/Ni3Al interface doped with Re, Ta and W [J]. Comput. Mater. Sci., 2020, 175: 109586
|
28 |
Raynolds J E, Smith J R, Srolovitz D J, et al. Adhesion in NiAl-Cr from first principles [J]. MRS Online Proc. Libr., 1995, 409: 177
|
29 |
Liu S Y, Shang J X, Wang F H, et al. Surface segregation of Si and its effect on oxygen adsorption on a γ-TiAl(111) surface from first principles [J]. J. Phys., 2009, 21: 225005
|
30 |
Tang J. First-principles study of the strengthening mechanism of Fe-Cr-Al alloy interface [D]. Shenyang: Shenyang Normal University, 2015
|
|
唐 杰. Fe-Cr-Al合金界面强化机理的第一性原理研究 [D]. 沈阳: 沈阳师范大学, 2015
|
31 |
Tang J, Zhang G Y, Bao J S, et al. First-principles study of the effect of S impurity on the adhesion of Fe/Al2O3 interface [J]. Acta Phys. Sin., 2014, 63: 187101
|
|
唐 杰, 张国英, 鲍君善 等. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究 [J]. 物理学报, 2014, 63: 187101
|
32 |
Ahmed F A M, Xue H T, Tang F L, et al. Effects of Zr-Re/W Co-segregation behavior on the thermodynamic stability and fracture strength of γ-Ni/γ'-Ni3Al interface [J]. Phys. Lett., 2021, 408A: 127466
|
33 |
Tanaka S, Kohyama M. Ab initio calculations of the 3C-SiC(111)/Ti polar interfaces [J]. Phys. Rev., 2001, 64B: 235308
|
34 |
Bao Z Y, Guo X C, Shang F L. An atomistic investigation into the nature of fracture of Ni/Al2O3 interface with yttrium dopant under tension [J]. Eng. Fract. Mech., 2015, 150: 239
|
35 |
Dutta R S, Arya A, Yusufali C, et al. Formation of aluminides on Ni-based superalloy 690 substrate, their characterization and first-principle Ni(111)/NiAl(110) interface simulations [J]. Surf. Coat. Technol., 2013, 235: 741
|
36 |
Sun S N, Kioussis N, Ciftan M. First-principles determination of the effects of boron and sulfur on the ideal cleavage fracture in Ni3Al [J]. Phys. Rev., 1996, 54B: 3074
|
37 |
Zhao Y H, Jing J H, Chen L W, et al. Current research status of interface of ceramic-metal laminated composite material for armor protection [J]. Acta Metall. Sin., 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
|
|
赵宇宏, 景舰辉, 陈利文 等. 装甲防护陶瓷-金属叠层复合材料界面研究进展 [J]. 金属学报, 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
|
38 |
Rivoaland L, Maurice V, Josso P, et al. The effect of sulfur segregation on the adherence of the thermally-grown oxide on NiAl—I: Sulfur segregation on the metallic surface of NiAl(001) single-crystals and at NiAl(001)/Al2O3 interfaces [J]. Oxid. Met., 2003, 60: 137
|
39 |
Zhao Y H. Stability of phase boundary between l12-Ni3Al phases: A phase field study [J]. Intermetallics, 2022, 144: 107528
|
40 |
Han L, Zheng S W, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int. J. Fatigue, 2021, 153: 106500
|
41 |
Audigié P, Rouaix-Vande Put A, Malié A, et al. Observation and modeling of α-NiPtAl and kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature [J]. Surf. Coat. Technol., 2014, 260: 9
|
42 |
Hu H, Li S R, Ren Y S, et al. Site preference and brittle-ductile transition mechanism of B2-NiAl with ternary elements additions form first-principles calculations [J]. Physica, 2020, 576B: 411703
|
43 |
Rong X M, Chen J, Li J T, et al. Structural stability and mech-anical property of Ni(111)-graphene-Ni(111) layered composite: A first-principles study [J]. Jpn. J. Appl. Phys., 2015, 54: 125503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|