Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (9): 1250-1264    DOI: 10.11900/0412.1961.2022.00611
Research paper Current Issue | Archive | Adv Search |
Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys
WANG Jingjing1, YAO Zhihao1(), ZHANG Peng1, ZHAO Jie1, ZHANG Mai1, WANG Lei2, DONG Jianxin1, CHEN Ying3
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
3.Fracture and Reliability Research Institute, Tohoku University, 6-6-11 Aramakiaza-Aoba, Aoba-ku, Sendai 980-8579, Japan
Cite this article: 

WANG Jingjing, YAO Zhihao, ZHANG Peng, ZHAO Jie, ZHANG Mai, WANG Lei, DONG Jianxin, CHEN Ying. Effect of Element S on Interfacial Stability of Matrix and Thermal Barrier Coating in Nickle-Based Superalloys. Acta Metall Sin, 2024, 60(9): 1250-1264.

Download:  HTML  PDF(3210KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The existence of elemental S in nickle-based superalloys negatively impacts their performance. The oxide film at the interface of the nickle-based superalloy peels off during the service process, leading to the failure of the alloy. However, the influence mechanism of the elemental S on the interface of the matrix and the coating layer is yet to be studied. Herein, the influence mechanism of the elemental S on the nickle-based superalloy and NiAl coating was studied using the first-principle calculation, especially focusing on the S segregation phenomenon. The interface adhesion work, segregation energy, and interface charge of the pure and S-doped interfaces of Ni3Al/NiAl and NiAl/Al2O3 were analyzed. The calculated results show that the interfacial adhesion work of the system decreases when the elemental S is present, resulting in reduced interface stability; in these systems, the elemental S tends to segregate toward the interface. By analyzing various aspects of the interface electronic structures (such as differential charge density, Bader charge, electron localization function, and densities of states), it was found that the bonding near the interface was weakened in the system with the elemental S, thereby reducing the tightness of the local connection. The influence mechanism of the elemental S on the interfacial stability of the system was finally revealed.

Key words:  nickle-based superalloy      S element      interface system      electronic structure      first-principle calculation     
Received:  01 December 2022     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51771017,52271087)
Corresponding Authors:  YAO Zhihao, professor, Tel: 13671347055, E-mail: zhihaoyao@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00611     OR     https://www.ams.org.cn/EN/Y2024/V60/I9/1250

Fig.1  Cross section microstructure of nickel-based superalloy with thermal barrier coating (TBC) (a) and schematic of microstructure of nickel-based superalloy (b)
Fig.2  Ni3Al cell model (a) and NiAl cell model (b)
Fig.3  Surface models of Ni3Al(111) (a), NiAl(110) (b), and Al2O3(0001) (c)
Fig.4  Phase interface models of Ni3Al/NiAl (a) and NiAl/Al2O3 (b) (d—phase distance between the upper region of Ni3Al(111)/NiAl(110) surface and the lower region of NiAl(110)/Al2O3(0001) surface)
Fig.5  E-d plot of Ni3Al/NiAl interface (E—energy obtained from static calculation of the system at the corresponding phase distance d )
Fig.6  E-d plot of NiAl/Al2O3 interface
Fig.7  Ni3Al/NiAl interface structure within S element (a) and the system of Ni3Al/NiAl interface after structure optimization (b)
Fig.8  NiAl/Al2O3 interface structure within S element (a) and the system of NiAl/Al2O3 interface after structure optimization (b)
SystemA / nm2ES1 / eVES2 / eVES1/S2 / eVWad / (J·m-2)
Pure interface0.8903-235.024-241.350-494.8603.427
Interface with S0.8967-235.024-241.350-496.2043.394
Table 1  Calculated values of interface adhesion work of Ni3Al/NiAl interface model
SystemA / nm2ES1 / eVES2 / eVES1/S2 / eVWad / (J·m-2)
Pure interface0.8325-883.450-293.219-1182.7101.162
Interface with S0.8330-883.477-292.060-1178.7330.449
Table 2  Calculated values of interfacial adhesion work of NiAl/Al2O3 interface model
Fig.9  Differential charge density at the interface of Ni3Al/NiAl system within S (The yellow and blue regions represent the increase and decrease of charge density, respectively. The same in Fig.11)
Fig.10  Distribution of (010) surface charge density near S atom at Ni3Al/NiAl interface (The blue area in the legend represents negative values, indicating the charge decrease, while the green to red area represents positive values, indicating the charge increase. The same in Figs.12, 17, and 18)
Fig.11  Differential charge density at theinterface NiAl/Al2O3 system within S
Fig.12  Distribution of (010) surface charge density near S atom at NiAl/Al2O3 interface
Fig.13  Partial atomic numbers in the Ni3Al/NiAl system
Fig.14  Bader charge transfer between adjacent atoms at Ni3Al/NiAl interface (Charge—Bader charge values of the designated atom, atom number—the number of designated atoms in corresponding system)
(a) Al atom (b) Ni atom
AtomBader value
Pure interface systemInterface system within S
Ni9.974558e10.112086e
Al-8.673444e-8.661022e
S-0.986231e
Table 3  The transfer of Bader charge in Ni3Al/NiAl interface system
Fig.15  Partial atomic numbers in the NiAl/Al2O3 system
Fig.16  Bader charge transfer between adjacent atoms at NiAl/Al2O3 interface
(a) Al atom (b) Ni atom (c) O atom
AtomPure interface systemInterface system within S
S-0.512175e
Ni7.239174e7.235117e
Al-51.712821e-52.242194e
O57.058943e58.220612e
Table 4  Transfer of Bader charge in NiAl / Al2O3 interface system
Fig.17  Electron localization function (ELF) projection in (010) plane of Ni3Al/NiAl system
(a) clean (b) within S element
Fig.18  ELF projection in (010) plane of NiAl/Al2O3 system
(a) clean (b) within S element
Fig.19  Total density of states (TDOS) of Ni3Al/NiAl interface system (EFermi—Fermi energy, E—energy)
Fig.20  Local partial density of states (LPDOS) of S atom and its neighboring Al, and Ni atom in Ni3Al/NiAl interface system (Ni', Al', and O' correspond to interface systems containing S elements)
Fig.21  TDOS of NiAl/Al2O3 interface system
Fig.22  LPDOS of S atom and its neighboring AlAl2O3 and O atoms (a), NiNiAl and AlNiAl atoms (b) in NiAl/Al2O3 interface system
1 Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
2 Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
3 Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
4 Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
5 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
6 Zhang T Y, Wu C, Xiong Z, et al. Research progress in materials and preparation techniques of thermal barrier coatings [J]. Laser Optoelectron. Prog., 2014, 51: 030004
张天佑, 吴 超, 熊 征 等. 热障涂层材料及其制备技术的研究进展 [J]. 激光与光电子学进展, 2014, 51: 030004
7 Xu H B, Gong S K, Liu F S. Recent development in materials design of thermal barrier coatings for gas turbine [J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(1): 7
徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究 [J]. 航空学报, 2000, 21(1): 7
8 Czech N, Fietzek H, Juez-Lorenzo M, et al. Studies of the bond-coat oxidation and phase structure of TBCs [J]. Surf. Coat. Technol., 1999, 113: 157
9 Zhang Z P, Zhang S Q, Wang D, et al. Effect of ppm level sulfur addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Foundry, 2019, 68: 232
张宗鹏, 张思倩, 王 栋 等. ppm级S对第二代抗热腐蚀镍基单晶高温合金恒温氧化行为的影响 [J]. 铸造, 2019, 68: 232
10 Walsh J M, Anderson N P. STP39061S Application of auger electron spectroscopy to the study of embrittlement in nickel [S]. West Conshohocken: ASTM E42, 1976: 58
11 Dong J X, Liu X B, Xie X S, et al. The segregation of sulfur and phosphorvs in nickel-base alloy 718 [J]. Acta Metall. Sin. (Eng. Lett.), 1997, 10: 510
12 Molins R, Rouzou I, Hou P. Chemical and morphological evolution of a (NiPt)Al bond coat [J]. Oxid. Met., 2006, 65: 263
13 Molins R, Hou P Y. Characterization of chemical and microstructural evolutions of a NiPtAl bondcoat during high temperature oxidation [J]. Surf. Coat. Technol., 2006, 201: 3841
14 Chieux M, Duhamel C, Molins R, et al. Sulfur localization in NiPtAl/superalloy systems after high temperature isothermal oxidation [J]. Oxid. Met., 2014, 81: 115
15 Ozfidan I, Chen K Y, Fu M. Effects of additives and impurity on the adhesive behavior of the NiAl(110)/Al2O3 (0001) interface: An ab initio study [J]. Metall. Mater. Trans., 2011, 42A: 4126
16 Chen Y, Yao Z H, Dong J X, et al. Molecular dynamics simulation of the γ′ phase deformation behaviour in nickel-based superalloys [J]. Mater. Sci. Technol., 2022, 38: 1439
17 Chen K, Zhao L R, Tse J S. Sulfur embrittlement on γ/γ' interface of Ni-base single crystal superalloys [J]. Acta Mater., 2003, 51: 1079
18 Fedorova E, Monceau D, Oquab D, et al. Characterisation of oxide scale adherence after the high temperature oxidation of nickel-based superalloys [J]. Mater. High Temp., 2012, 29: 243
19 Nychka J A, Clarke D R, Meier G H. Spallation and transient oxide growth on PWA 1484 superalloy [J]. Mater. Sci. Eng., 2008, A490: 359
20 Vargas-Hernández R A. Bayesian optimization for calibrating and selecting hybrid-density functional models [J]. J. Phys. Chem., 2020, 124A: 4053
21 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
22 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
23 Eriş R, Akdeniz M V, Mekhrabov A O. Atomic size effect of alloying elements on the formation, evolution and strengthening of γ′-Ni3Al precipitates in Ni-based superalloys [J]. Intermetallics, 2019, 109: 37
24 Carling K M, Carter E A. Effects of segregating elements on the adhesive strength and structure of the α-Al2O3/β-NiAl interface [J]. Acta Mater., 2007, 55: 2791
25 Fiorentini V, Methfessel M. Extracting convergent surface energies from slab calculations [J]. J. Phys., 1996, 8: 6525
26 Huang M L, Wang C Y. First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics [J]. Chin. Phys., 2016, 25B:107104
27 Zhu C X, Yu T, Wang C Y, et al. First-principles study of Ni/Ni3Al interface doped with Re, Ta and W [J]. Comput. Mater. Sci., 2020, 175: 109586
28 Raynolds J E, Smith J R, Srolovitz D J, et al. Adhesion in NiAl-Cr from first principles [J]. MRS Online Proc. Libr., 1995, 409: 177
29 Liu S Y, Shang J X, Wang F H, et al. Surface segregation of Si and its effect on oxygen adsorption on a γ-TiAl(111) surface from first principles [J]. J. Phys., 2009, 21: 225005
30 Tang J. First-principles study of the strengthening mechanism of Fe-Cr-Al alloy interface [D]. Shenyang: Shenyang Normal University, 2015
唐 杰. Fe-Cr-Al合金界面强化机理的第一性原理研究 [D]. 沈阳: 沈阳师范大学, 2015
31 Tang J, Zhang G Y, Bao J S, et al. First-principles study of the effect of S impurity on the adhesion of Fe/Al2O3 interface [J]. Acta Phys. Sin., 2014, 63: 187101
唐 杰, 张国英, 鲍君善 等. 杂质S对Fe/Al2O3界面结合影响的第一性原理研究 [J]. 物理学报, 2014, 63: 187101
32 Ahmed F A M, Xue H T, Tang F L, et al. Effects of Zr-Re/W Co-segregation behavior on the thermodynamic stability and fracture strength of γ-Ni/γ'-Ni3Al interface [J]. Phys. Lett., 2021, 408A: 127466
33 Tanaka S, Kohyama M. Ab initio calculations of the 3C-SiC(111)/Ti polar interfaces [J]. Phys. Rev., 2001, 64B: 235308
34 Bao Z Y, Guo X C, Shang F L. An atomistic investigation into the nature of fracture of Ni/Al2O3 interface with yttrium dopant under tension [J]. Eng. Fract. Mech., 2015, 150: 239
35 Dutta R S, Arya A, Yusufali C, et al. Formation of aluminides on Ni-based superalloy 690 substrate, their characterization and first-principle Ni(111)/NiAl(110) interface simulations [J]. Surf. Coat. Technol., 2013, 235: 741
36 Sun S N, Kioussis N, Ciftan M. First-principles determination of the effects of boron and sulfur on the ideal cleavage fracture in Ni3Al [J]. Phys. Rev., 1996, 54B: 3074
37 Zhao Y H, Jing J H, Chen L W, et al. Current research status of interface of ceramic-metal laminated composite material for armor protection [J]. Acta Metall. Sin., 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
赵宇宏, 景舰辉, 陈利文 等. 装甲防护陶瓷-金属叠层复合材料界面研究进展 [J]. 金属学报, 2021, 57: 1107
doi: 10.11900/0412.1961.2021.00051
38 Rivoaland L, Maurice V, Josso P, et al. The effect of sulfur segregation on the adherence of the thermally-grown oxide on NiAl—I: Sulfur segregation on the metallic surface of NiAl(001) single-crystals and at NiAl(001)/Al2O3 interfaces [J]. Oxid. Met., 2003, 60: 137
39 Zhao Y H. Stability of phase boundary between l12-Ni3Al phases: A phase field study [J]. Intermetallics, 2022, 144: 107528
40 Han L, Zheng S W, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int. J. Fatigue, 2021, 153: 106500
41 Audigié P, Rouaix-Vande Put A, Malié A, et al. Observation and modeling of α-NiPtAl and kirkendall void formations during interdiffusion of a Pt coating with a γ-(Ni-13Al) alloy at high temperature [J]. Surf. Coat. Technol., 2014, 260: 9
42 Hu H, Li S R, Ren Y S, et al. Site preference and brittle-ductile transition mechanism of B2-NiAl with ternary elements additions form first-principles calculations [J]. Physica, 2020, 576B: 411703
43 Rong X M, Chen J, Li J T, et al. Structural stability and mech-anical property of Ni(111)-graphene-Ni(111) layered composite: A first-principles study [J]. Jpn. J. Appl. Phys., 2015, 54: 125503
[1] HUANGFU Hao, WANG Zilong, LIU Yongli, MENG Fanshun, SONG Jiupeng, QI Yang. A First Principles Investigation of W1 - x Ir x Alloys: Structural, Electronic, Mechanical, and Thermal Properties[J]. 金属学报, 2022, 58(2): 231-240.
[2] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[3] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[4] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[5] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[6] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
[7] ZHOU Dianwu LIU Jinshui XU Shaohua PENG Ping. FIRST–PRINCIPLE CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF Al2Sr AND Mg2Sr PHASES[J]. 金属学报, 2011, 47(10): 1315-1320.
[8] ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY[J]. 金属学报, 2010, 46(1): 97-103.
[9] ZHAO Yufei FU Yuechun HU Qingmiao YANG Rui. FIRST-PRINCIPLES INVESTIGATIONS OF LATTICE PARAMETERS, BULK MODULI AND PHASE STABILITIES OF Ti1-xVx AND Ti1-xNbx ALLOYS[J]. 金属学报, 2009, 45(9): 1042-1048.
[10] ZHANG Guoying ZHANG Hui FANG Geliang YANG Lina. ELECTRONIC STRUCTURE OF DIFFERENT REGIONS AND ANALYSIS OF STRESS CORROSION MECHANISM OF Al--Zn--Mg--Cu ALLOYS[J]. 金属学报, 2009, 45(6): 687-691.
[11] LIANG Chu; XU Lingyan; YAO Chunxian; LAN Zhiqiang; LI Guangxu; GUO Jin. First-Principles Investigation on Effect of Co On Hydrogen Storage Properties of ZrMn2 Alloy[J]. 金属学报, 2008, 44(3): 351-356 .
[12] Liu Guili. The study on Ti alloys stress corrosion mechanicby recursion method[J]. 金属学报, 2007, 43(3): 249-253 .
[13] . A first-principles study on properties of Ni/Ni3Al interfaces with Re and Ru addition[J]. 金属学报, 2007, 43(2): 137-143 .
[14] TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng; LI Xiaobo. Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu[J]. 金属学报, 2006, 42(6): 565-571 .
[15] JIAN Xiaoling. Investigations of Electronic Structures and Bond Characteristics of ZrMn2 Alloy and Its Hydride by First Principle[J]. 金属学报, 2006, 42(2): 123-128 .
No Suggested Reading articles found!