Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (7): 977-989    DOI: 10.11900/0412.1961.2022.00333
Current Issue | Archive | Adv Search |
Simulation of Thermal Expansion Coefficient of Configurational GNPs/2009Al Composites
ZHOU Li1, ZHANG Mingyuan1, YANG Xinsheng1(), LIU Zhenyu2(), WANG Quanzhao2, XIAO Bolv2, MA Zongyi2
1 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHOU Li, ZHANG Mingyuan, YANG Xinsheng, LIU Zhenyu, WANG Quanzhao, XIAO Bolv, MA Zongyi. Simulation of Thermal Expansion Coefficient of Configurational GNPs/2009Al Composites. Acta Metall Sin, 2024, 60(7): 977-989.

Download:  HTML  PDF(5204KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocomposites comprising of graphene nanoplatelets (GNPs) and aluminum (Al) have gained tremendous interest over the past few decades owing to their exceptional mechanical, thermal, and electrical properties. The microstructure of GNPs in these composites, such as dispersion, and orientation, significantly affects the loading capacity and thermal properties. However, previous studies on the mechanical properties have overshadowed investigations into the thermal expansion coefficient of GNPs/Al composites with different microstructures. In this study, a three-dimensional model of microscopic GNPs/2009Al composites was established using the finite element method and the software ABAQUS. The effects of the distribution, geometric configuration, and volume fraction of graphene nanoplatelets on the thermal expansion coefficient of the composite were analyzed. Results show that the thermal expansion coefficient of the composite is less affected by the distribution form of graphene nanoplatelets. However, when the distribution form of graphene nanoplatelets is 2 clusters, the thermal expansion coefficient is smaller than other distribution forms. Moreover, the geometry and volume fraction of graphene nanoplatelets have a significant effect on the thermal expansion coefficient. An increase in the volume fraction of graphene nanoplatelets leads to a decrease in the thermal expansion coefficient of the composites. When the volume fraction of graphene nanoplatelets in the composite is 2.5% and the aggregate distribution is bundled, the thermal expansion coefficient decreases the most (by about 27%) compared to the matrix. By comparing with experimental results, the validity of the model is verified. The conclusions of this study can provide a theoretical basis for designing and optimizing the configuration of graphene nanoplatelets/aluminum matrix composites.

Key words:  configuration      finite element simulation      GNPs/2009Al composites      coefficient of thermal expansion     
Received:  08 July 2022     
ZTFLH:  TG339  
Fund: National Natural Science Foundation of China(51931009);National Natural Science Foundation of China(52120105001);Natural Science Foundation of Shandong Province(ZR2023ME097)
Corresponding Authors:  LIU Zhenyu, associate professor, Tel: (024)23971749, E-mail: zyliu@imr.ac.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00333     OR     https://www.ams.org.cn/EN/Y2024/V60/I7/977

Fig.1  Representative volume element (RVE) model of graphene nanoplatelets (GNPs)/2009Al composites
(a) whole model (b) meshing (Inset shows the local mesh refinement)
Fig.2  Local coordinates and material direction
PropertyParameterGNPs[25]2009Al[26]Unit
Elastic propertyE1 = E294360069000MPa
E31950069000MPa
ν120.140.35
ν13-0.090.35
ν23-0.090.35
G1241418025555MPa
G13 = G23501025555MPa
Thermal expansion coefficientα1 = α2-523.210-6oC-1
α30.7523.210-6oC-1
Table 1  Material properties used in the finite element simulation[25,26]
Fig.3  Two corresponding nodes on the opposite surfaces
Fig.4  Boundary conditions (U1, U2, and U3 are displacements in the x, y, and z directions, respectively)
Fig.5  Axial views (a1-a4) and cross-sectional views (b1-b4) of RVE with different GNPs distributions
(a1, b1) one cluster (a2, b2) two clusters (a3, b3) four clusters (a4, b4) eight clusters
Fig.6  X-direction stress (σ11) distributions of GNPs/2009Al composites with different GNPs distributions
(a) one cluster (b) two clusters (c) four clusters (d) eight clusters
Fig.7  σ11 distributions of GNPs with different GNPs distributions
(a) one cluster (b) two clusters (c) four clusters (d) eight clusters
Fig.8  X-direction strain (ε11) distributions of GNPs/2009Al composites with different GNPs distributions
(a) one cluster (b) two clusters (c) four clusters (d) eight clusters
Fig.9  ε11 distributions of GNPs with different GNPs distributions
(a) one cluster (b) two clusters (c) four clusters (d) eight clusters
Fig.10  Effects of GNPs distribution on thermal expansion coefficient of GNPs/2009Al composites
Fig.11  Schematics of RVE model with five GNPs configurations
(a) layered (b) evenly oriented (c) bundled (d) networked (e) randomly arranged
Fig.12  σ11 distributions of GNPs/2009Al composite with different GNPs configurations
(a) layered (b) evenly oriented (c) bundled (d) networked (e) randomly arranged
Fig.13  σ11 distributions of GNPs with different GNPs configurations
(a) layered (b) evenly oriented (c) bundled (d) networked (e) randomly arranged
Fig.14  ε11 distributions of GNPs/2009Al composites with different GNPs configurations
(a) layered (b) evenly oriented (c) bundled (d) networked (e) randomly arranged
Fig.15  ε11 distributions of GNPs with different configurations
(a) layered (b) evenly oriented (c) bundled (d) networked (e) randomly arranged
Fig.16  Schematics of point paths at different angles
(a) 0° (b) 30° (c) 45° (d) 60° (e) 90°
Fig.17  Strains at various points on different paths
Fig.18  Effect of GNPs configurations on thermal expansion coefficient of GNPs/2009Al composites
Fig.19  Thermal expansion coefficients of GNPs/2009Al composites as a function of volume fraction of GNPs
1 Wu G H, Kuang Z Y. Opportunities and challenges for metal matrix composites in the context of equipment upgrading [J]. Strateg. Study CAE, 2020, 22(2): 79
武高辉, 匡泽洋. 装备升级换代背景下金属基复合材料的发展机遇和挑战 [J]. 中国工程科学, 2020, 22(2): 79
2 Zhang X X, Zheng Z, Gao Y, et al. Progress in high throughput fabrication and characterization of metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
张学习, 郑 忠, 高 莹 等. 金属基复合材料高通量制备及表征技术研究进展 [J]. 金属学报, 2019, 55: 109
doi: 10.11900/0412.1961.2018.00307
3 Zhang H P, Xu C, Xiao W L, et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion [J]. Mater. Sci. Eng., 2016, A658: 8
4 Li M, Gao H Y, Liang J M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites [J]. Mater. Charact., 2018, 140: 172
5 Lin Z Q, Zheng W, Li H, et al. Microstructures and mechanical properties of TA15 titanium alloy and graphene reinforced TA15 composites prepared by spark plasma sintering [J]. Acta Metall. Sin., 2021, 57: 111
doi: 10.11900/0412.1961.2020.00186
林彰乾, 郑 伟, 李 浩 等. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能 [J]. 金属学报, 2021, 57: 111
doi: 10.11900/0412.1961.2020.00186
6 Yu Z H, Yang W S, Zhou C, et al. Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method [J]. Carbon, 2019, 141: 25
7 Zhang Z W, Liu Z Y, Xiao B L, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2018, 135: 215
8 Zhao N Q, Guo S Y, Zhang X, et al. Progress on graphene/copper composites focusing on reinforcement configuration design: A review [J]. Acta Metall. Sin., 2021, 57: 1087
doi: 10.11900/0412.1961.2021.00120
赵乃勤, 郭斯源, 张 翔 等. 基于增强相构型设计的石墨烯/Cu复合材料研究进展 [J]. 金属学报, 2021, 57: 1087
doi: 10.11900/0412.1961.2021.00120
9 Chang Q M, Li Z L, Xu F Y. Preparation and properties of graphene reinforced aluminum matrix composites [J]. Hot Work. Technol., 2022, 51(14): 70
常庆明, 李宗伦, 许芳宇. 石墨烯增强铝基复合材料的制备及性能研究 [J]. 热加工工艺, 2022, 51(14): 70
10 Wang C Y, Su Y S, Ouyang Q B, et al. Enhanced through-plane thermal conductivity and mechanical properties of vertically aligned graphene nanoplatelet@graphite flakes reinforced aluminum composites [J]. Diamond Relat. Mater., 2020, 108: 107929
11 Evans W, Prasher R, Fish J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J]. Int. J. Heat Mass Transfer, 2008, 51: 1431
12 Liu G, Zhao N Q, Shi C S, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites [J]. Mater. Sci. Eng., 2017, A699: 185
13 Lin D, Richard Liu C, Cheng G J. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement [J]. Acta Mater., 2014, 80: 183
14 Sedehi S M R, Khosravi M, Yaghoubinezhad Y. Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion [J]. Ceram. Int., 2021, 47: 33180
15 Zhou X, Liu X X. Mechanical properties and strengthening mechanism of graphene nanoplatelets reinforced magnesium matrix composites [J]. Acta Metall. Sin., 2020, 56: 240
doi: 10.11900/0412.1961.2019.00158
周 霞, 刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制 [J]. 金属学报, 2020, 56: 240
16 Mandal A, Tiwari J K, AlMangour B, et al. Microstructural and thermal expansion behaviour of graphene reinforced 316L stainless steel matrix composite prepared via powder bed fusion additive manufacturing [J]. Results Mater., 2021, 11: 100200
17 Wang Z T, Dai D Y, Liu A L, et al. Microstructure and thermal conductivity of graphene-Al composite [J]. J. Heilongjiang Univ. Sci. Technol., 2019, 29: 201
王振廷, 戴东言, 刘爱莲 等. 石墨烯铝基复合材料的组织和导热性能 [J]. 黑龙江科技大学学报, 2019, 29: 201
18 Jeon C H, Jeong Y H, Seo J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing [J]. Int. J. Precis. Eng. Manuf., 2014, 15: 1235
19 Saboori A, Pavese M, Badini C, et al. Microstructure and thermal conductivity of Al-graphene composites fabricated by powder metallurgy and hot rolling techniques [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 675
20 Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network [J]. Carbon, 2018, 127: 102
21 Chu K, Wang X H, Li Y B, et al. Thermal properties of graphene/metal composites with aligned graphene [J]. Mater. Des., 2018, 140: 85
22 Han T W, He P F, Wang J, et al. Numerical simulation of temperature dependence of tensile mechanical properties for single graphene sheet [J]. J. Tongji Univ. (Nat. Sci.), 2009, 37: 1638
韩同伟, 贺鹏飞, 王 健 等. 石墨烯拉伸力学性能温度相关性的数值模拟 [J]. 同济大学学报(自然科学版), 2009, 37: 1638
23 Prieto R, Molina J M, Narciso J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications [J]. Scr. Mater., 2008, 59: 11
24 Rao M V, Mahajan P, Mittal R K. Effect of architecture on mechanical properties of carbon/carbon composites [J]. Compos. Struct., 2008, 83: 131
25 Liu Y L. Study on the mechanical and thermal properties of 3D braided composites with graphene nanoplatelets/carbon nanotubes reinforced resin matrix [D]. Chengdu: University of Electronic Science and Technology of China, 2021
刘云龙. 石墨烯/碳纳米管强化树脂基3D编织复合材料力-热性能研究 [D]. 成都: 电子科技大学, 2021
26 Huang K. The Study on fabrication and properties of high strength and high thermal conductivity graphite/aluminium composites material [D]. Wuhan: Jianghan University, 2018
黄 凯. 高强度高导热镀层石墨铝复合材料的制备与性能研究 [D]. 武汉: 江汉大学, 2018
27 Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. Int. J. Solids Struct., 2003, 40: 1907
28 Bhouri M, Mzali F. Analysis of thermo-elastic and physical properties of recycled 2017 aluminium alloy/Gp composites: Thermal management application [J]. Mater. Res. Express, 2020, 7: 026546
29 Chawla N, Deng X, Schnell D R M. Thermal expansion anisotropy in extruded SiC particle reinforced 2080 aluminum alloy matrix composites [J]. Mater. Sci. Eng., 2006, A426: 314
30 Bhouri M, Mzali F, Berdin C, et al. Numerical homogenization and experimental study of the influence of graphite content and voids on the coefficients of thermal expansion of 2017 aluminium matrix composites [J]. Mater. Today Commun., 2021, 26: 101638
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] ZHAO Naiqin, GUO Siyuan, ZHANG Xiang, HE Chunnian, SHI Chunsheng. Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review[J]. 金属学报, 2021, 57(9): 1087-1106.
[3] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[4] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[5] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[6] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[7] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[8] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[9] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[10] Kan SONG,Kai YU,Xin LIN,Jing CHEN,Haiou YANG,Weidong HUANG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF HEAT TREATMENT LASER SOLID FORMING SUPERALLOY INCONEL 718[J]. 金属学报, 2015, 51(8): 935-942.
[11] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[12] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
[13] PAN Kunming, ZHANG Laiqi, WANG Meng, LIN Junpin. BRITTLE-TO-DUCTILE TRANSITION FOR T2 IN THE Mo-Si-B SYSTEM[J]. 金属学报, 2013, 49(11): 1392-1398.
[14] XU Jiayu CHEN Hongtao LI Mingyu. STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION[J]. 金属学报, 2012, 48(9): 1042-1048.
[15] YUE Wu, QIN Hongbo, ZHOU Minbo, MA Xiao, ZHANG Xinping. INFLUENCE OF SOLDER JOINT CONFIGURATION ON ELECTROMIGRATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Cu/Sn-58Bi/Cu MICROSCALE JOINTS[J]. 金属学报, 2012, 48(6): 678-686.
No Suggested Reading articles found!