Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (7): 895-904    DOI: 10.11900/0412.1961.2021.00362
Research paper Current Issue | Archive | Adv Search |
Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg
SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming(), LI Jin
Department of Materials Science, Fudan University, Shanghai 200433, China
Cite this article: 

SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg. Acta Metall Sin, 2022, 58(7): 895-904.

Download:  HTML  PDF(3259KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As one of the energy-saving steels, non-quenched and tempered steel commonly requires the addition of alloying elements to improve its properties. The inclusions related to those elements have significant influence on the properties of the steels. In this work, the potentiodynamic polarization curves of C70S6 non-quenched and tempered steel and its Mg-Ca doped samples were measured by solution modification, and the samples before and after the test were characterized by SEM-EDS. The results show that the MnS inclusions in the samples act as active sites for pitting. The doped Ca and Mg elements make the distribution of inclusions more dispersed and the content of MnS in each inclusion lower, leading to the better pitting resistance of the doped specimens.

Key words:  non quenched and tempered steel      inclusion      pitting corrosion     
Received:  30 August 2021     
ZTFLH:  TG174.3  
Fund: National Key Research and Development Program of China(2018YFB0704400);National Natural Science Foundation of China(51901046)
About author:  JIANG Yiming, professor, Tel: (021)31243648, E-mail: ymjiang@fudan.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00362     OR     https://www.ams.org.cn/EN/Y2022/V58/I7/895

Inclusion typeNumber0-2 μm2-5 μm5-10 μm> 10 μm
MnS4750248720641981
MgO-MnS127320
CaO-MnS1810800
Al2O3-MnS105633570
Spinel-MnS77344030
Aluminate-MnS1576876130
Others2311840
Total5142268022342271
Table 1  Inclusion type, number, and size of C70S6 non-quenched and tempered steel
Inclusion typeNumber0-2 μm2-5 μm5-10 μm> 10 μm
MnS677449491777480
MgO-MnS62392210
CaO-MnS32100
Al2O3-MnS2071426230
Spinel-MnS2301616720
Aluminate-MnS445299136100
Others49311710
Total777056232082650
Table 2  Inclusion type, number, and size of C70S6-CaMg non-quenched and tempered steel
Fig.1  Equivalent diameter distribution of MnS inclusions in C70S6 and C70S6-CaMg non-quenched and tempered steel
Fig.2  Inclusion morphology (a) and element distribution maps (b) of C70S6
Fig.3  Inclusion morphology (a) and element distribution maps (b) of C70S6-CaMg
Fig.4  Polarization curves of 409L stainless steel under different alkaline conditions
Fig.5  Polarization curves of pure iron at different pH
Fig.6  Open circuit potential (OCP) (a) and polarization (b) curves of pure iron with different Cl- concentration [Cl-] at pH = 12.6
Fig.7  OCP (a) and polarization (b) curves of Fe, C70S6, and C70S6-CaMg at pH = 12.6 and [Cl-] = 1 mol/L
Fig.8  OCP (a) and polarization (b) curves of C70S6-CaMg at different [Cl-] and pH = 12
Fig.9  OCP (a, c) and polarization (b, d) curves of C70S6 (a, b) and C70S6-CaMg (c, d) at pH = 12 and [Cl-] = 0.1 mol/L
Fig.10  Etch pit morphologies of C70S6-CaMg (a) and C70S6 (b) after polarization curve test
Fig.11  Polarization curves of C70S6 and C70S6-CaMg at pH = 12.3 and [Cl-] = 0.1 mol/L
Fig.12  Pit morphologies of C70S6-CaMg (a) and C70S6 (b) at pH = 12.3 and [Cl-] = 0.1 mol/L
Fig.13  OM images of C70S6 (a) and C70S6-CaMg (b) samples after potentiostatic polarization
Fig.14  Main pit morphology (a) and element distribution maps (b) of C70S6
Fig.15  Pit morphology (a) and element distribution maps (b) of C70S6
Fig.16  Main pit (a) and inclusion pit (b) (insets) compositions of C70S6
Fig.17  Pit morphology (a) and element distribution maps (b) of C70S6-CaMg (Red arrows point to the dissolved grooves between the matrix and the MnS;yellow arrows point to the dissolved grooves between sulfides and oxides)
1 Li X C. Accelerate implementation of green manufacturing of the steel industry to improve level of green development [J]. Metall. Econ. Manage., 2019, (2): 4
李新创. 加快钢铁“绿色制造”提升绿色发展水平 [J]. 冶金经济与管理, 2019, (2): 4
2 Luo Z M. Application and prospect of non-quenched tempered steel [J]. Fujian Metall., 2018, 47(4): 52
罗灶明. 非调质钢的应用及展望 [J]. 福建冶金, 2018, 47(4): 52
3 Zhang Q, Ma Q. Application status and prospect of non-quenched and tempered steel in construction machinery [J]. MW Met. Form., 2014, (15): 62
张 坤, 马 强. 非调质钢在工程机械上的应用现状及展望 [J]. 金属加工 (热加工), 2014, (15): 62
4 Wu W. Application and development of non-quenched and tempered steel for automotive parts [J]. World Iron Steel, 2009, 9(4): 62
吴 玮. 汽车零部件用非调质钢的应用和发展 [J]. 世界钢铁, 2009, 9(4): 62
5 Liu S H, Wang X H, Dai G W, et al. Investigation on non-metallic inclusions in hot forging steels of high cleanliness [J]. Iron Steel, 2008, 43(5): 35
刘石虹, 王新华, 戴观文 等. 高洁净度汽车用非调质钢中非金属夹杂物研究 [J]. 钢铁, 2008, 43(5): 35
6 Lu J L, Wang Y P, Wang Q M, et al. Effect of MnS inclusions distribution on intragranular ferrite formation in medium carbon non-quenched and tempered steel for large-sized crankshaft [J]. ISIJ Int., 2019, 59: 524
doi: 10.2355/isijinternational.ISIJINT-2018-509
7 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
8 Qi Y F, Li J, Shi C B, et al. Precipitation and growth of MnS inclusion in an austenitic hot-work die steel during ESR solidification process [J]. Metall. Res. Technol., 2019, 116: 322
doi: 10.1051/metal/2018114
9 Zhang T S, Min Y, Liu C J, et al. Effect of Mg addition on the evolution of inclusions in Al-Ca deoxidized melts [J]. ISIJ Int., 2015, 55: 1541
doi: 10.2355/isijinternational.ISIJINT-2014-691
10 Lu P Y, Wu H J, Yue F, et al. Effect of calcium treatment on change behavior of inclusions in sulfur-containing non-quenched and tempered steel [J]. Steelmaking, 2015, 31(2): 30
陆鹏雁, 吴华杰, 岳 峰 等. 钙处理对含硫非调质钢中夹杂物演变行为的影响 [J]. 炼钢, 2015, 31(2): 30
11 Shen P, Fu J X. Morphology study on inclusion modifications using Mg-Ca treatment in resulfurized special steel [J]. Materials, 2019, 12: 197
doi: 10.3390/ma12020197
12 Yan Z Y, Zhang H, Yang Y Y. Improvement of microstructure and properties of non-quenched and tempered steel for hot forging with calcium treatment [J]. Hot Working Technol., 2016, 45(13):127
闫治宇, 张 晗, 杨瑶瑶. Ca处理对含硫热锻微合金非调质钢组织性能改善的研究 [J]. 热加工工艺, 2016, 45(13): 127
13 Liu Q. Study on the corrosion behavior induced by typical inclusions in 304 stainless steel [D]. Beijing: University of Science and Technology Beijing, 2018
刘 青. 304不锈钢中典型夹杂物诱发腐蚀行为研究 [D]. 北京: 北京科技大学, 2018
14 Choi J Y, Kim S K, Kang Y B, et al. Compositional evolution of oxide inclusions in austenitic stainless steel during continuous casting [J]. Steel Res. Int., 2015, 86: 284
doi: 10.1002/srin.201300486
15 Ha H Y, Park C J, Kwon H S. Effects of non-metallic inclusions on the initiation of pitting corrosion in 11% Cr ferritic stainless steel examined by micro-droplet cell [J]. Corros. Sci., 2007, 49: 1266
doi: 10.1016/j.corsci.2006.08.017
16 Ånmark N, Karasev A, Jönsson P G. The effect of different non-metallic inclusions on the machinability of steels [J]. Materials, 2015, 8: 751
doi: 10.3390/ma8020751
17 Wranglen G. Pitting and sulphide inclusions in steel [J]. Corros. Sci., 1974, 14: 331
doi: 10.1016/S0010-938X(74)80047-8
18 Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon Bainitic steel in NaCl solution [J]. Corrosion, 2015, 71: 1467
doi: 10.5006/1837
19 Wang L W, Xin J C, Cheng L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
doi: 10.1016/j.corsci.2018.11.007
20 Gong Y, Yang C, Yao C, et al. Acidic/caustic alternating corrosion on carbon steel pipes in heat exchanger of ethylene plant [J]. Mater. Corros., 2011, 62: 967
21 Shi J J, Sun W, Geng G Q. Corrosion resistances of passive films on low-carbon rebar and fine-grained rebar in alkaline media [J]. Acta Metall. Sin., 2011, 47: 449
施锦杰, 孙 伟, 耿国庆. 普通低碳钢与细晶粒钢钝化膜在碱性介质中的耐蚀性 [J]. 金属学报, 2011, 47: 449
22 Fu H, Chen C Y, Li J Q, et al. Effect of sodium thiosulfate on corrosion behavior of Q235 steel in alkaline solution [J]. Hot Working Technol., 2017, 46(8): 87
付慧, 陈朝轶, 李军旗 等. 硫代硫酸钠对Q235钢碱性腐蚀行为的影响 [J]. 热加工工艺, 2017, 46(8): 87
23 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation [J]. J. Electrochem. Soc., 2018, 165: C762
doi: 10.1149/2.0251811jes
24 Liu Y, Zong N F. Effects of Al-Mg alloy treatment on behavior and size of inclusions in SUH 409L stainless steel [J]. Metall. Res. Technol., 2018, 115: 111
doi: 10.1051/metal/2017085
25 He B, Li J, Shi C B, et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process [J]. Metall. Res. Technol., 2018, 115: 501
doi: 10.1051/metal/2018071
26 Pang Z X, Zhu R, Chen P D, et al. Formation of MgO-based inclusions during AOD and ladle treatment of Al-killed 2205 duplex stainless steel [J]. Metall. Res. Technol., 2017, 114: 211
doi: 10.1051/metal/2017028
27 Sun H, Wu L P, Xie J B, et al. Inclusions modification and improvement of machinability in a non-quenched and tempered steel with Mg treatment [J]. Metall. Res. Technol., 2020, 117: 208
doi: 10.1051/metal/2020021
28 Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[5] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[6] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[7] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[10] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[11] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[12] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[13] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[14] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[15] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
No Suggested Reading articles found!