|
|
Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method |
LIU Xuxi1, LIU Wenbo1( ), LI Boyan2, HE Xinfu3, YANG Zhaoxi1, YUN Di1 |
1.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China 2.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3.China Institute of Atomic Energy, Beijing 102413, China |
|
Cite this article:
LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method. Acta Metall Sin, 2022, 58(7): 943-955.
|
Abstract As a pressure containment shell that supports all components in the nuclear reactor, reactor pressure vessel (RPV) is an irreplaceable core component during the whole life of nuclear power plant. Cu-riched particles precipitated in the early stage of radiation have significant effects on the mechanical property (such as radiation hardening and embrittlement) changes during the application of RPV steel. However, the Cu-riched precipitate with extremely small size (smaller than 2 nm) cannot be detected by the conventional experimental method, such as scanning electron microscope and transmission electron microscope. Hence, it is essential to calculate the critical nucleus size of Cu-riched precipitate under radiation in RPV steel. In this study, based on the constrained string method and phase-field theory, the critical nucleus size and minimum energy path of Cu-riched precipitate in Fe-Cu alloy under irradiation were calculated, and the minimum energy path, critical nucleus radius, and vacancy concentration distribution were also studied. The calculated results showed that both temperature and Cu concentration have a great influence on the energy path and critical nucleus cluster size of Cu-riched particles in Fe-Cu binary alloy. Temperature is the main factor influencing the energy path direction of the nucleus, while Cu concentration is the main factor influencing the growth rate of the nucleus radius. With the increase of temperature, the Cu concentration in the nucleus increases, while the time needed for the Cu-riched particles to reach its critical nucleus size decreases, and the energy barrier needed to be crossed also decreases. The distribution of Cu concentration also has a great influence on the distribution of vacancy during radiation. The vacancy concentration in the Cu-riched cluster is lower than that in the Fe-Cu matrix. The vacancy concentration decreased as the Cu concentration increased. The calculated results are consistent with the experimental results.
|
Received: 30 December 2020
|
|
Fund: National Natural Science Foundation of China(U1830124);National Natural Science Foundation of China(11705137);China Postdoctoral Science Foundation(2019M663738);Innovative Scientific Program of China National Nuclear Corporation |
About author: LIU Wenbo, associate professor, Tel: (029)82668948, E-mail: liuwenbo@xjtu.edu.cn
|
1 |
Li Z C, Chen L. Irradiation embrittlement mechanisms and relevant influence factors of nuclear reactor pressure vessel steels [J]. Acta Metall. Sin., 2014, 50: 1285
|
|
李正操, 陈 良. 核能系统压力容器辐照脆化机制及其影响因素 [J]. 金属学报, 2014, 50: 1285
doi: 10.11900/0412.1961.2014.00189
|
2 |
Klueh R L, Harries D R. High-Chromium Ferritic and Martensitic Steels for Nuclear Applications [M]. West Conshohocken, PA: ASTM, 2001: 1
|
3 |
Grobner P J. The 885°F (475oC) embrittlement of ferritic stainless steels [J]. Metall. Trans., 1973, 4: 251
|
4 |
Sharma T, Bonagani S K, Kumar N N, et al. Detection of intergranular embrittlement of reactor pressure vessel steel by electrochemical method [J]. Mater. Sci. Eng., 2018, A725: 88
|
5 |
Bergner F, Gillemot F, Hernández-Mayoral M, et al. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels [J]. J. Nucl. Mater., 2015, 461: 37
doi: 10.1016/j.jnucmat.2015.02.031
|
6 |
Lambrecht M, Malerba L, Almazouzi A. Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels [J]. J. Nucl. Mater., 2008, 378: 282
doi: 10.1016/j.jnucmat.2008.06.030
|
7 |
Hernández-Mayoral M, Gómez-Briceño D. Transmission electron microscopy study on neutron irradiated pure iron and RPV model alloys [J]. J. Nucl. Mater., 2010, 399: 146
doi: 10.1016/j.jnucmat.2009.11.013
|
8 |
Ke H B, Wells P, Edmondson P D, et al. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels [J]. Acta Mater., 2017, 138: 10
doi: 10.1016/j.actamat.2017.07.021
|
9 |
Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
|
|
孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295
doi: 10.11900/0412.1961.2019.00440
|
10 |
Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline system [J]. Model. Simul. Mater. Sci. Eng., 2018, 26: 065003
|
11 |
Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
|
12 |
Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
|
13 |
Yin B Y. Ceramic Nuclear Fuel Process [M]. Harbin: Harbin Engineering University Press, 2016: 277
|
|
尹邦跃. 陶瓷核燃料工艺 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 277
|
14 |
Molnar D, Mukherjee R, Choudhury A, et al. Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations [J]. Acta Mater., 2012, 60: 6961
doi: 10.1016/j.actamat.2012.08.051
|
15 |
Zhu J M, Zhang T L, Yang Y, et al. Phase field study of the copper precipitation in Fe-Cu alloy [J]. Acta Mater., 2019, 166: 560
doi: 10.1016/j.actamat.2019.01.009
|
16 |
Zhao B J, Zhao Y H, Sun Y Y, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method [J]. Acta Metall. Sin., 2019, 55: 593
|
|
赵宝军, 赵宇宏, 孙远洋 等. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究 [J]. 金属学报, 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
|
17 |
Yan Z W, Shi S J, Li Y S, et al. Vacancy and interstitial atom evolution with the separation of the nanoscale phase in Fe-Cr alloys: Phase-field simulations [J]. Phys. Chem. Chem. Phys., 2020, 22: 3611
doi: 10.1039/C9CP06247E
|
18 |
Li B Y, Hu S Y, Li C L, et al. Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 065007
|
19 |
Weinan E, Ren W Q, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events [J]. J. Chem. Phys., 2007, 126: 164103
doi: 10.1063/1.2720838
|
20 |
Maragliano L, Fischer A, Vanden-Eijnden E, et al. String method in collective variables: Minimum free energy paths and isocommittor surfaces [J]. J. Chem. Phys., 2006, 125: 024106
|
21 |
Li B Y. Modelling and simulation in radiation induced defects in reactor pressure vessel steels [D]. Beijing: Tsinghua University, 2018
|
|
李博岩. 反应堆压力容器钢辐照损伤的计算模拟研究 [D]. 北京: 清华大学, 2018
|
22 |
Li B Y, Zhang L, Li C L, et al. Finding Non-classical critical nuclei and minimum energy path of Cu precipitates in Fe-Cu alloys [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 085006
|
23 |
Zhang L, Chen L Q, Du Q. Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids [J]. J. Sci. Comput., 2008, 37: 89
doi: 10.1007/s10915-008-9207-7
|
24 |
Zhang L, Chen L Q, Du Q. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations [J]. J. Comput. Phys., 2010, 229: 6574
doi: 10.1016/j.jcp.2010.05.013
|
25 |
Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations [J]. Comput. Phys. Commun., 1998, 108: 147
doi: 10.1016/S0010-4655(97)00115-X
|
26 |
Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
|
27 |
Cahn J W, Hilliard J E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid [J]. J. Chem. Phys., 1959, 31: 688
doi: 10.1063/1.1730447
|
28 |
Biner S B. Programming Phase-Field Modeling [M]. Cham: Springer, 2017: 1
|
29 |
Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
|
30 |
Peng H J, Xie Y Q, Liu S Q. Research on atomic states, physical properties and catalytic performance of Ru metal [J]. Sci. China, 2007, 50E: 177
|
31 |
Breeman M, Boerma D O. Migration of Cu adatoms on a Cu(100) surface, studied with low-energy ion scattering (LEIS) [J]. Surf. Sci., 1992, 269-270: 224
doi: 10.1016/0039-6028(92)91254-9
|
32 |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
|
33 |
Ke J H, Reese E R, Marquis E A, et al. Flux effects in precipitation under irradiation—Simulation of Fe-Cr alloys [J]. Acta Mater., 2018, 164: 586
doi: 10.1016/j.actamat.2018.10.063
|
34 |
Makin M J, Minter F J. Irradiation hardening in copper and nickel [J]. Acta Metall., 1960, 8: 691
doi: 10.1016/0001-6160(60)90200-5
|
35 |
Odette G R, Yamamoto T, Klingensmith D. On the effect of dose rate on irradiation hardening of RPV steels [J]. Philos. Mag., 2005, 85: 779
doi: 10.1080/14786430412331319910
|
36 |
Mohapatra J N, Kamada Y, Kikuchi H, et al. Effect of Cr-rich phase precipitation on magnetic and mechanical properties of Fe-20% Cr alloy [J]. IEEE Trans. Magn., 2011, 47: 4356
doi: 10.1109/TMAG.2011.2155047
|
37 |
Nagano T, Enomoto M. Simulation of the growth of copper critical nucleus in dilute bcc Fe-Cu alloys [J]. Scr. Mater., 2006, 55: 223
doi: 10.1016/j.scriptamat.2006.04.015
|
38 |
Garcke H, Kwak D J C. On asymptotic limits of Cahn-Hilliard systems with elastic misfit [A]. Analysis, Modeling and Simulation of Multiscale Problems [M]. Berlin Heidelberg: Springer, 2006: 87
|
39 |
Koyama T, Onodera H. Computer simulation of phase decomposition in Fe-Cu-Mn-Ni quaternary alloy based on the phase-field method [J]. Metall. Trans., 2005, 46: 1187
|
40 |
Li Y L, Hu S Y, Zhang L, et al. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing [J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 025002
|
41 |
Zhang C, Enomoto M, Yamashita T, et al. Cu precipitation in a prestrained Fe-1.5 wt pct Cu alloy during isothermal aging [J]. Metall. Mater. Trans., 2004, 35A: 1263
|
42 |
Saridakis E. Optimization of the critical nuclear size for protein crystallization: A note [J]. Acta Cryst., 2000, D56: 106
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|