Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 1083-1092    DOI: 10.11900/0412.1961.2021.00044
Research paper Current Issue | Archive | Adv Search |
A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere
CONG Hongda1, WANG Jinlong1(), WANG Cheng2,3, NING Shen1, GAO Ruoheng1, DU Yao2, CHEN Minghui1, ZHU Shenglong2, WANG Fuhui1
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institude Co. Ltd., Xuzhou 220005, China
Cite this article: 

CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere. Acta Metall Sin, 2022, 58(8): 1083-1092.

Download:  HTML  PDF(2500KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

CB2 steel (ZG12Cr9Mo1Co1NiVNbNB) is a ferritic stainless steel with excellent creep properties at high temperature (550-700oC) and is mainly used in 600oC ultrasupercritical units. The poor oxidation resistance of the material limits its practical applications in harsh, high-temperature environments, in which the steam unit faces high-temperature water vapor for a long period of time. Therefore, surface modification or coating has become an important means to improve the high-temperature oxidation resistance of the material. An inorganic silicate coating has the advantages of high thermal-chemical stability, similar thermal expansion coefficient, and simple preparation process, which can significantly improve the oxidation and corrosion resistance of the material. In this study, a new type of inorganic silicate composite coating was designed, based on the CB2 steel. The oxidation behavior of CB2 steel and coated specimens at 650oC high-temperature steam atmosphere for 1000 h was studied by using a high-temperature water vapor simulation device. The results showed that the oxidation rate of the coated CB2 steel was 30 times slower than that of uncoated CB2 steel; thus, the coating exhibited a good protective effect. After 1000 h of oxidation, the oxide scale on the CB2 steel was loose and cracked with obvious voids and the oxidation product was mainly composed of Fe2O3. The inorganic silicate composite coating significantly improved the oxidation resistance of CB2 steel; after 1000 h of oxidation, no spallation areas or cracks were found.

Key words:  CB2 steel      inorganic potassium silicate coating      steam atmosphere oxidation      high-temperature oxidation     
Received:  22 January 2021     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(51671053);National Natural Science Foundation of China(51801021);Ministry of Industry and Information Technology Project(MJ-2017-J-99)
About author:  WANG Jinlong, associate professor, Tel: (024)83691562, E-mail: wangjinlong@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00044     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/1083

No.TypeChanges in color and state
1AlH2P3O10Unchanged
2ZnFrom grey to yellowish-white, the zinc powder sintering
3FEPLight red
4Al2O3Unchanged
5ZrO2Unchanged
6GlassUnchanged
7CCBUnchanged
8TiO2Unchanged
9SiCUnchanged
10KAl2(AlSi3O10)(OH)2Unchanged
Table 1  The changes of color and state of different fillers after oxidation at 650oC
No.Mass fraction ofMass fraction ofCuring reactionAppearanceWater resistance
potassium silicate / %AlH2P3O10 / %
11000Apparent curedFlat and smoothNo water resistance
2955Fully curedFlat and smoothWell
39010Fully curedFlat and smoothWell
48515Fully curedMore surface particlesWell
58020Fully curedMore surface particlesWell
Table 2  The solidification behaviors of AlH2P3O10 in potassium silicate
Fig.1  Schematic of high-temperature oxidation device for corrosion test in steam atmosphere
Fig.2  Oxidation kinetic curves of CB2 steel and its inorganic coating after oxidized in high temperature steam atmosphere at 650oC for 1000 h (a) and its locally enlarged part for the first 200 h (b)
Fig.3  XRD spectra of CB2 steel (a) and its inorganic coating (b) after oxidized in high-temperature steam atmosphere at 650oC for 1000 h
Fig.4  Surface morphologies of CB2 specimen (a, c) and its inorganic coating (b, d) in high-temperature steam atmosphere at 650oC for 500 h (a, b) and 1000 h (c, d)
Fig.5  Cross-sectional morphologies of CB2 specimen (a, c) and its inorganic coating (b, d) in high-temperature steam atomsphere at 650oC for 500 h (a, b) and 1000 h (c, d) (The right figures in Fig.5c are the corresponding EDS result, and the inset in Fig.5d is the local enlargement of the box)
PositionFeCrOMn
124.720.7474.540
216.859.2573.180.73
322.470.1377.250.15
419.165.8274.610.41
Table 3  EDS analyses of positions 1-4 in Fig.5
1 Yang Y P, Xu C, Xu G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery [J]. Energy Convers. Manage., 2015, 89: 137
doi: 10.1016/j.enconman.2014.09.065
2 Yang Y P, Yang Z P, Xu G, et al. Situation and prospect of energy consumption for China's thermal power generation [J]. Proc. CSEE, 2013, 33(23): 1
杨勇平, 杨志平, 徐 钢 等. 中国火力发电能耗状况及展望 [J]. 中国电机工程学报, 2013, 33(23): 1
3 Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants [J]. Therm. Eng., 2017, 64: 83
doi: 10.1134/S0040601517020082
4 Wang J L, Zhang X D, Hou M J. Development and expectation of application of ultra-supercritical double-reheat steam turbines [J]. Therm. Power Gener., 2017, 46(8): 11
王建录, 张晓东, 侯明军. 超超临界二次再热机组汽轮机应用现状与展望 [J]. 热力发电, 2017, 46(8): 11
5 Lin F S, Xie X S, Zhao S Q, et al. Selection of superalloys for superheater tubes of domestic 700oC A-USC boilers [J]. J. Chin. Soc. Power Eng., 2011, 31: 960
林富生, 谢锡善, 赵双群 等. 我国700℃超超临界锅炉过热器管用高温合金选材探讨 [J]. 动力工程学报, 2011, 31: 960
6 Xiang B. Research on environmentally friendly and water-based architectural heat insulation coatings [D]. Guangzhou: South China University of Technology, 2012
向 波. 环保型水性建筑保温隔热涂料的研究 [D]. 广州: 华南理工大学, 2012
7 Xia Z G. Development of a new water-based metal anti-corrosion coating [D]. Yangzhou: Yangzhou University, 2013
夏中高. 新型水性金属防腐蚀涂料的研制 [D]. 扬州: 扬州大学, 2013
8 Xie D M, Hu J M, Tong S P, et al. The development of zinc-rich paints [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 314
谢德明, 胡吉明, 童少平 等. 富锌漆研究进展 [J]. 中国腐蚀与防护学报, 2004, 24: 314
9 Wei X Y. Super corrosion retarding water borne inorgannic zinc-rich coatings [J]. Paint Coat. Ind., 2007, 37(5): 40
魏向阳. 新一代水性无机富锌涂料 [J]. 涂料工业, 2007, 37(5): 40
10 Tan X J, Wang W, Liu Y S, et al. The preparation of nano-inorganic composite coatings and its performance study [J]. Shandong Chem. Ind., 2018, 47(9): 22
谭向君, 王 维, 刘玉硕 等. 纳米-无机复合涂料的制备及其性能研究 [J]. 山东化工, 2018, 47(9): 22
11 Zhu W, Li W F, Mu S L, et al. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties [J]. Appl. Surf. Sci., 2017, 405: 157
doi: 10.1016/j.apsusc.2017.02.046
12 Qomariyah L, Sasmita F N, Novaldi H R, et al. Preparation of stable colloidal silica with controlled size nano spheres from sodium silicate solution [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 395: 012017
13 Tänzer R, Yu J, Stephan D. Alkali activated slag binder: Effect of cations from silicate activators [J]. Mater. Struct., 2017, 50: 90
doi: 10.1617/s11527-016-0962-x
14 Cheng L H, Luo Y, Ma S H, et al. Corrosion resistance of inorganic zinc-rich coating reinforced by Ni-coated coal fly ash [J]. J. Alloys Compd., 2019, 786: 791
doi: 10.1016/j.jallcom.2019.01.368
15 Peng G Y, Zhai J Q. Preparation of high SiO2/K2O ratio potassium silicate solution and its zinc-rich coatings [J]. Paint Coat. Ind., 2011, 41(8): 27
彭刚阳, 翟金清. 高模数硅酸钾溶液及其富锌涂料的制备 [J]. 涂料工业, 2011, 41(8): 27
16 Parashar G, Srivastava D, Kumar P. Ethyl silicate binders for high performance coatings [J]. Prog. Org. Coat., 2001, 42: 1
doi: 10.1016/S0300-9440(01)00128-X
17 Rui G. Water based high temperature resistant and antioxidation inorganic coatings [J]. Shanghai Coat., 2011, 49(4): 23
芮 龚. 水性耐高温抗氧化无机涂料 [J]. 上海涂料, 2011, 49(4): 23
18 Duan D F. Preparation of TiO2 NPs and its effect on the surface of the external wall coating [D]. Chongqing: Chongqing University, 2013
段东方. 纳米TiO2的制备及对外墙涂料表面改性研究 [D]. 重庆: 重庆大学, 2013
19 Qiu X, Tariq N U H, Wang J Q, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique [J]. Surf. Coat. Technol., 2018, 350: 391
doi: 10.1016/j.surfcoat.2018.07.039
20 He Y H, Li H B, Ou L G, et al. Preparation and characterisation of water-based aluminium pigments modified with SiO2 and polymer brushes [J]. Corros. Sci., 2016, 111: 802
doi: 10.1016/j.corsci.2016.06.014
21 Shao G F, Wang Q Q, Wu X D, et al. Evolution of microstructure and radiative property of metal silicide-glass hybrid coating for fibrous ZrO2 ceramic during high temperature oxidizing atmosphere [J]. Corros. Sci., 2017, 126: 78
doi: 10.1016/j.corsci.2017.06.017
22 Khan A, Huang Y, Dong Z, et al. Effect of Cr2O3 nanoparticle dispersions on oxidation kinetics and phase transformation of thermally grown alumina on a nickel aluminide coating [J]. Corros. Sci., 2019, 150: 91
doi: 10.1016/j.corsci.2019.01.032
23 Liu X T, Wang D D, Wu Y K, et al. Investigation on corrosion and wear resistance of MgO-Al2O3 composite coating prepared by plasma electrolytic oxidation [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 1017
doi: 10.1111/ijac.13458
24 Liao Y M, Zhang B, Chen M H, et al. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution [J]. Corros. Sci., 2020, 167: 108526
doi: 10.1016/j.corsci.2020.108526
25 Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
26 Yu Z D, Chen M H, Chen K, et al. Corrosion of enamel with and without CaF2 in molten aluminum at 750oC [J]. Corros. Sci., 2019, 148: 228.
doi: 10.1016/j.corsci.2018.12.016
27 Seybolt A U. Observations on the Fe-Cr-O system [J]. J. Electrochem. Soc., 1960, 107: 147
doi: 10.1149/1.2427643
28 Shen J N, Zhou L J, Li T F. High-temperature oxidation of Fe-Cr alloys in wet oxygen [J]. Oxid. Met., 1997, 48: 347
doi: 10.1007/BF01670507
29 Nagl M M, Evans W T. The mechanical failure of oxide scales under tensile or compressive load [J]. J. Mater. Sci., 1993, 28: 6247
doi: 10.1007/BF01352181
30 Gesmundo F, Hou P Y. Analysis of pore formation at oxide-alloy interfaces-Ⅱ: Theoretical treatment of vacancy condensation for immobile interfaces [J]. Oxid. Met., 2003, 59: 63
doi: 10.1023/A:1023065915321
31 Cotterell B, Chen Z. Buckling and cracking of thin films on compliant substrates under compression [J]. Int. J. Fract., 2000, 104: 169
doi: 10.1023/A:1007628800620
32 Wang J S, Evans A G. Effects of strain cycling on buckling, cracking and spalling of a thermally grown alumina on a nickel-based bond coat [J]. Acta Mater., 1999, 47: 699
doi: 10.1016/S1359-6454(98)00328-0
33 Li Y, Cheng X D, Cao W, et al. Fabrication of adiabatic foam at low temperature with sodium silicate as raw material [J]. Mater. Des., 2015, 88: 1008
doi: 10.1016/j.matdes.2015.09.078
34 Qu S S. Research on the preparation of high-temperature and temperature shock resistance potassium silicate coating [D]. Shenyang: Shenyang University of Technology, 2018
曲伸伸. 耐高温抗热震硅酸钾涂层制备技术研究 [D]. 沈阳: 沈阳工业大学, 2018
35 Francisco J S, Capelossi V R, Aoki I V. Evaluation of a sulfursilane anticorrosive pretreatment on galvannealed steel compared to phosphate under a waterborne epoxy coating [J]. Electrochim. Acta, 2014, 124: 128
doi: 10.1016/j.electacta.2013.09.144
36 Yang C F, Smyrl W H, Cussler E L. Flake alignment in composite coatings [J]. J. Membr. Sci., 2004, 231: 1
doi: 10.1016/j.memsci.2003.09.022
37 Liu H W, Xu G, Song G L, et al. An EIS investigation of the mechanism of aluminum polyphosphate as anti-rust pigment [J]. J. Chin. Soc. Corros. Rrot., 1997, 17: 215
刘宏伟, 许 刚, 宋光铃 等. 防锈颜料三聚磷酸铝作用机理的EIS研究 [J]. 中国腐蚀与防护学报, 1997, 17: 215
38 Xie M L, Luo D L, Xian X B, et al. Effect of alumina on the properties of ultra-high pressure sintered silicon carbide [J]. J. Chin. Ceram. Soc., 2008, 36: 1144
谢茂林, 罗德礼, 鲜晓斌 等. 氧化铝添加量对超高压烧结碳化硅性能的影响 [J]. 硅酸盐学报, 2008, 36: 1144
39 Sun Y X, Wang Y Z, He Y L. Effects of RE oxides on plasma sprayed Al2O3 coatings [J]. Mater. Prot., 2001, 34(6): 8
孙永兴, 王引真, 何艳玲. 稀土氧化物添加剂对Al2O3等离子喷涂层的影响 [J]. 材料保护, 2001, 34(6): 8
40 Sadeghimeresht E, Eklund J, Simon J P, et al. Effect of water vapor on the oxidation behavior of HVAF-sprayed NiCr and NiCrAlY coatings [J]. Mater. Corros., 2018, 69: 1431
41 Ostwald C, Grabke H J. Initial oxidation and chromium diffusion. I. Effects of surface working on 9-20% Cr steels [J]. Corros. Sci., 2004, 46: 1113
doi: 10.1016/j.corsci.2003.09.004
42 Huang X X, Li J S, Hu R, et al. Evolution of oxidation in Ni-Cr-W alloy at 1100oC [J]. Rare Met. Mater. Eng., 2010, 39: 1908
doi: 10.1016/S1875-5372(10)60136-1
43 Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
doi: 10.1016/S0010-938X(00)00026-3
44 Xue R J, Wu Y C. Mechanism of modification of silane coupling agents and properties of modified sericite [J]. J. Chin. Ceram. Soc., 2007, 35: 373
薛茹君, 吴玉程. 硅烷偶联剂修饰改性的机理及改性绢云母的性能 [J]. 硅酸盐学报, 2007, 35: 373
[1] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[2] Hongxi LIU,Zhengxue LI,Xiaowei ZHANG,Jun TAN,Yehua JIANG. Effect of Heat Treatment on High-Temperature Oxidation Resistance of High Niobium Ti-Al Intermetallic Coating Fabricated by Laser In Situ Synthesis on Titanium Alloy[J]. 金属学报, 2017, 53(2): 201-210.
[3] LUO Lei, SHEN Yifu, LI Bo, HU Weiye. PREPARATION AND OXIDATION BEHAVIOR OF ALUMINIZED COATING ON TC4 TITANIUM ALLOY VIA FRICTION STIR LAP WELDING METHOD[J]. 金属学报, 2013, 49(8): 996-1002.
[4] XIAO Xuan XU Hui QIN Xuezhi GUO Yongan GUO Jianting ZHOU Lanzhang. THERMAL FATIGUE BEHAVIORS OF THREE CAST NICKEL BASE SUPERALLOYS[J]. 金属学报, 2011, 47(9): 1129-1134.
[5] QIU Jun ZHAO Wenjin Thomas Guilbert Jean-Luc Bechade. HIGH TEMPERATURE OXIDATION BEHAVIOURS OF THREE ZIRCONIUM ALLOYS[J]. 金属学报, 2011, 47(9): 1216-1220.
[6] TANG Zhaolin; WANG Fuhui; WU Weitao (State Key Laboratory for Corrosion and Protection; Institute of Corrosion and Protection ofMetals; Chinese academy of Sciences. Shenyang 110015). THE EFFECT OF Cr ON OXIDATI0N BEHAVIOR OF TiAl INTERMETALLICS[J]. 金属学报, 1997, 33(10): 1028-1034.
No Suggested Reading articles found!