Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (1): 65-75    DOI: 10.11900/0412.1961.2017.00142
Orginal Article Current Issue | Archive | Adv Search |
A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere
Mingxiao GUO1,2, Chen PAN1(), Zhenyao WANG1, Wei HAN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

Mingxiao GUO, Chen PAN, Zhenyao WANG, Wei HAN. A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere. Acta Metall Sin, 2018, 54(1): 65-75.

Download:  HTML  PDF(1234KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon steels as common structural material have been widely used for basic facilities with the development of the city. In these service environments, carbon steel would inevitably encounter the atmospheric corrosion. Especially, the corrosion of carbon steels exposed to coastal-industrial atmosphere is very outstanding. However, the initial corrosion mechanism of carbon steel subjected to coastal-industrial environment still need to be clarified, which would be vital for predicating the subsequent corrosion process. In addition, although many scholars studied the synergism of SO2 and Cl-, which obviously accelerates the corrosion of steel and reduces its service life, there is few research about the effect of the synergism of SO2 and Cl- (in different proportion) on the early corrosion behavior of the carbon steel. Therefore, it is of great importance to investigate the initial corrosion mechanism of carbon steel and the effect of the synergism of SO2 and Cl- (in different proportion) in the coastal-industrial atmosphere. In present work, the initial corrosion behavior of Q235 carbon steel exposed to a simulated coastal-industrial atmosphere has been studied by weight loss, XRD, SEM and electrochemical measurements. Also, the effect of the synergism of SO2 and Cl- (in different proportion) on the early corrosion behavior of Q235 car bon steel has been investigated. The results indicate that the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial atmosphere presented a transition from corrosion acceleration to deceleration, and the kinetics of accelerated corrosion process followed the empirical equation D=Atn. A double-layered corrosion product was formed on the surface of carbon steel after 24 h: the loose outer layer and relative dense inner layer; the synergistic effect between SO2 and Cl- accelerated the corrosion of carbon steel. However, the change in the ratio of SO2 and Cl- had no significant effect on the corrosion loss of carbon steel, and had not changed the composition of corrosion products formed on carbon steel surface. SO2 caused the corrosion morphology of carbon steel to tend to uniform corrosion.

Key words:  carbon steel      atmospheric corrosion      synergism     
Received:  20 April 2017     
ZTFLH:  TG172.3  
Fund: Supported by National Natural Science Foundation of China (Nos.51601199, 51671197 and 51401222)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00142     OR     https://www.ams.org.cn/EN/Y2018/V54/I1/65

Fig.1  Average corrosion rates of Q235 carbon steel exposed to a simulated coastal-industrial atmosphere as a function of exposure time
Fig.2  Thickness reductions of Q235 carbon steel exposed to a simulated coastal-industrial atmosphere

as a function of exposure time

Fig.3  XRD patterns for the scraped rust formed on Q235 carbon steel surface after different exposure time
Fig.4  Surface morphologies of Q235 carbon steel exposed to a simulated coastal- industrial atmosphere

for 24 h (a), 48 h (b), 72 h (c), 96 h (d) and 120 h (e)

Fig.5  Cross-sectional morphologies of Q235 carbon steel exposed to a simulated coastal-industrial

atmosphere for 24 h (a), 48 h (b), 72 h (c),96 h (d) and 120 h (e)

Fig.6  Potentiodynamic polarization curves of Q235 carbon steel with different exposure time (E—potential, i—current density)
Fig.7  Corrosion current densities (icorr) of corroded Q235 carbon steel as a function of exposure time
Fig.8  Thickness losses of Q235 carbon steel exposed to different corrosive mediums for 120 h
Fig.9  XRD patterns for the scraped rust formed on Q235 carbon steel exposed to different corrosive mediums for 120 h(a) the mixed corrosive mediums(b) the single corrosive mediums
Fig.10  Cross-sectional morphologies of Q235 carbon steel exposed to different corrosive mediums for 120 h
(a) NaCl (b) NaCl∶NaHSO3=3∶1 (c) NaCl∶NaHSO3=1∶1 (d) NaCl∶NaHSO3=1∶3 (e) NaHSO3
Fig.11  Morphologies of Q235 carbon steel exposed to different corrosive mediums after removing corrosion products for 120 h
(a) NaCl (b) NaCl∶NaHSO3=3∶1 (c) NaCl∶NaHSO3=1∶1 (d) NaCl∶NaHSO3=1∶3 (e) NaHSO3
Fig.12  Potentiodynamic polarization curves of Q235 carbon steel exposed to different corrosive mediums for 120 h
Fig.13  icorr of Q235 carbon steel exposed to different corrosive mediums for 120 h
[1] Yu Q C, Wang Z Y, Wang C.Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition[J]. Acta Metall. Sin., 2010, 46: 1133(于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J]. 金属学报, 2010, 46: 1133)
[2] Leygraf C, Graedel T,translated by Han E-H. Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2005: 121(Leygraf C,Graedel T著, 韩恩厚译. 大气腐蚀 [M]. 北京: 化学工业出版社, 2005: 121)
[3] Wang Z Y, Yu G C, Han W.A survey of the atmospheric corrosiveness of natural environments in China[J]. Corros. Prot., 2003, 24: 323(王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查[J]. 腐蚀与防护, 2003, 24: 323)
[4] Wang S T, Yang S W, Gao K W, et al.Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning[J]. Int. J. Miner. Metall. Mater., 2009, 16: 58
[5] Wan Y, Yan C W, Cao C N.Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys.-Chim. Sin., 2004, 20: 659(万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20: 659)
[6] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997
[7] Wang Z Y, Yuan Q C, Wang C, et al.Corrosion behaviors of steels in marine atmospheric environment with SO2 pollution[J]. Chin. Sci. Bull., 2012, 57: 2991(王振尧, 于全成, 汪川等. 在含硫污染的海洋大气环境中核电用钢的腐蚀行为[J]. 科学通报, 2012, 57: 2991)
[8] Kucera V, Knotkova D, Gullman J, et al. Corrosion of structural metals in atmospheres with different corrosivity at 8 year's exposure in Sweden and Czechoslovakia [J]. Key Eng. Mater., 1988, 20-28: 167
[9] Liang C F, Hou W T.Sixteen-year atmospheric corrosion exposure study of steels[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1(梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究[J]. 中国腐蚀与防护学报, 2005, 25: 1)
[10] Cai J P, Zheng Y P, Liu S R.Synergistic effect of chloride and sulphur-bearing pollutant in atmospheric corrosion of mild steel[J]. J. Chin. Soc. Corros. Prot., 1996, 16: 303(蔡健平, 郑逸苹, 刘寿荣. 氯化物、硫污染物对碳钢大气腐蚀的协同作用[J]. 中国腐蚀与防护学报, 1996, 16: 303)
[11] Qu Q, Yan C W, Zhang L, et al.Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel[J]. Acta Metall. Sin., 2002, 38: 1062(屈庆, 严川伟, 张蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应[J]. 金属学报, 2002, 38: 1062)
[12] Nishimura T, Katayama H, Noda K, et al.Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56: 935
[13] Lyon S B, Thompson G E, Johnson J B, et al.Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: Aluminum, galvanized steel, and steel[J]. Corrosion, 1987, 43: 719
[14] Dunn D S, Bogart M B, Brossia C S, et al.Corrosion of iron under alternating wet and dry conditions[J]. Corrosion, 2000, 56: 470
[15] Pan C, Han W, Wang Z Y, et al.Evolution of initial atmospheric corrosion of carbon steel in an industrial atmosphere[J]. J. Mater. Eng. Perform., 2016, 25(12): 1
[16] Yamashita M, Konishi H, Kozakura T, et al.In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays[J]. Corros. Sci., 2005, 47: 2492
[17] Antony H, Perrin S, Dillmann P, et al.Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts[J]. Electrochim. Acta, 2007, 52: 7754
[18] Hao L, Zhang S X, Dong J H, et al.Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion[J]. Metall. Mater. Trans., 2012, 43A: 1724
[19] Hao L.Rusting evolution and anti-corrosion mechanism of MnCu-P/Mo weathering steels [D]. Shenyang: Graduate University of Chinese Academy of Sciences, 2011(郝龙. MnCu-P/Mo耐候钢的锈蚀演化规律与耐蚀机理 [D]. 沈阳: 中国科学院研究生院, 2011)
[20] Li Q X, Wang Z Y, Han W, et al.Analysis on the corrosion rust of carbon steel exposed to Salt Lake area for 25 months[J]. Acta Phys.-Chim. Sin., 2008, 24: 1459(李巧霞, 王振尧, 韩薇等. 盐湖地区暴露25个月的碳钢表面锈层分析[J]. 物理化学学报, 2008, 24: 1459)
[21] Tian Z Q, Wang C B, Kong X D, et al.Effect of rust layer on corrosion resistance of hull steel[J]. Equip. Environ. Eng., 2012, 9(3): 66(田志强, 王崇碧, 孔小东等. 锈层对船体钢耐腐蚀性能影响研究[J]. 装备环境工程, 2012, 9(3): 66)
[22] Bai Y G, Tian N, Liu C M, et al.Study on the weather resistance and corrosion process of 09CuPTiRE steel[J]. J. Mater. Metall., 2003, 2: 63(白玉光, 田妮, 刘春明等. 09CuPTiRE钢耐候性能及腐蚀过程研究[J]. 材料与冶金学报, 2003, 2: 63)
[23] Hao L, Zhang S X, Dong J H, et al.A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion[J]. Corros. Sci., 2012, 54: 244
[24] Svensson J E, Johansson L G.A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2[J]. Corros. Sci., 1993, 24: 721
[25] Xiao K, Dong C F, Li X G, et al.Effect of deposition of NaCl on the initial atmospheric corrosion of Q235[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 26(肖葵, 董超芳, 李晓刚等. NaCl颗粒沉积对Q235钢早期大气腐蚀的影响[J]. 中国腐蚀与防护学报, 2006, 26: 26)
[26] Zhang X Y, Cai J P, Ma Y J, et al.Analysis on atmospheric corrosion of weathering and carbon steels[J]. Corros. Sci. Prot. Technol., 2004, 16: 389(张晓云, 蔡健平, 马颐军等. 耐候钢和碳钢大气腐蚀规律分析[J]. 腐蚀科学与防护技术, 2004, 16: 389)
[27] Mendoza A R, Corvo F.Outdoor and indoor atmospheric corrosion of carbon steel[J]. Corros. Sci., 1999, 41: 75
[28] Singh D D N, Yadav S, Saha J K. Role of climatic conditions on corrosion characteristics of structural steels[J]. Corros. Sci., 2008, 50: 93
[29] Dawson J L, Ferreira M G S. Crevice corrosion on 316 stainless steel in 3% sodium chloride solution[J]. Corros. Sci., 1986, 26: 1027
[30] Weissenrieder J, Leygraf C.In situ studies of filiform corrosion of iron[J]. J. Electrochem. Soc., 2004, 151: B165
[31] Wang J H, Wei F I, Chang Y S, et al.The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres[J]. Mater. Chem. Phys., 1997, 47: 1
[32] Misawa T, Hashimoto K, Shimodaira S.The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature[J]. Corros. Sci., 1974, 14: 131
[33] Evans U R,Taylor C A J. Mechanism of atmospheric rusting[J]. Corros. Sci., 1972, 12: 227
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[3] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[4] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[5] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[7] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[8] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[9] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[10] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[11] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[12] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[13] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[14] Xingchen CHEN, Jie WANG, Deren CHEN, Shuncong ZHONG, Xiangfeng WANG. Effect of Na on Early Atmospheric Corrosion of Al[J]. 金属学报, 2019, 55(4): 529-536.
[15] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
No Suggested Reading articles found!