Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (4): 505-512    DOI: 10.11900/0412.1961.2016.00256
Orginal Article Current Issue | Archive | Adv Search |
Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics
Li ZHOU1,2,Chao CUI1,Qing JIA2(),Yingshi MA1
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Li ZHOU,Chao CUI,Qing JIA,Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics. Acta Metall Sin, 2017, 53(4): 505-512.

Download:  HTML  PDF(8772KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

γ-TiAl intermetallics are attractive candidates for applications in aircraft turbine engines due to their low density and good mechanical properties at high temperature. However, the low room temperature ductility makes the machinability of these materials poorer compared to the conventional alloys. In this work, a meso-model of γ-TiAl intermetallic was developed using ABAQUS finite element software. The surface morphology and edge fracture mechanism of different material models were analyzed, and the effects of cutting parameters on the surface roughness and size of edge fracture were investigated. The results indicate that the cracks and pits occur between the lamellar and lamellar with different material properties. At the same time, due to the low ductility of γ-TiAl intermetallic, the negative shear angle begins to form at the exit of workpiece, then the edge fracture is formed. In addition, for both surface roughness and size of edge fracture, the experimental data are slightly higher than the simulated data obtained by the hexagonal lamellar model, and smaller than those obtained by the rectangular lamellar model. With the increasing of cutting depth, the surface roughness and the size of edge fracture increase gradually, on the contrary, the cutting speed has a small effect on them. Therefore, in order to obtain a fine surface quality during machining of γ-TiAl intermetallic, the cutting speed can be adopted as higher as possible, but not the cutting depth.

Key words:  γ-TiAl intermetallics      milling process      meso-model      finite element     
Received:  23 June 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00256     OR     https://www.ams.org.cn/EN/Y2017/V53/I4/505

Fig.1  OM image of γ-TiAl intermetallics
Fig.2  Illustration of flat-end milling process (vf—feed rate, ω—rotation speed)
Fig.3  2D milling model of single tooth (r—radius of milling cutter, fz—feed per tooth)
Fig.4  Two-dimensional finite element model of γ-TiAl intermetallics (a) and local zooming of Fig.4a (b) (h—effective cutting depth, RP—reference point)
Fig.5  FEM models of hexagonal (a) and rectangular (b) lamellae, which is composed of 0°, 45°, 90° and fully lamellar microstructures
Fig.6  Low (a, b) and locally high (c, d) magnified surface morphologies of γ-TiAl intermetallics obtained from hexagonal meso-model (a, c) and rectangular meso-model (b, d)
Fig.7  Section (a) and surface (b) OM images of γ-TiAl intermetallics after milling
Fig.8  Influences of cutting depth (a) and cutting speed (b) on surface roughness Ra
Parameter 45° 90° Fully lamellar microstructure
Young's modulus E / GPa 220 170 300 350
Poisson's ratio ν 0.32 0.23 0.1 0.08
Yield strength σy / MPa 1296 847 1175 1401
Strain hardening coefficient B / MPa 2966 2168
Strain hardening exponent n 0.45 0.36
Table 1  Physical properties of different lamellar structures of γ-TiAl intermetallics[5~12,25]
Fig.9  Edge morphologies on the exit surface of γ-TiAl intermetallics obtained from hexagonal meso-model (a, c) and rectangular meso-model (b, d) before (a, b) and after (c, d) fracture
Fig.10  SEM image of γ-TiAl intermetallics
Fig.11  Edge OM image of γ-TiAl intermetallics after milling
Fig.12  Influences of cutting depth (a) and cutting speed (b) on size of edge fracture W
[1] Klocke F, Lung D, Arft M, et al.On high-speed turning of a third-generation gamma titanium aluminide[J]. Int. J. Adv. Manuf. Technol., 2013, 65: 155
[2] Boyer R R.An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, A213: 103
[3] Liu R C, Wang Z, Liu D, et al.Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion[J]. Acta Metall. Sin., 2013, 49: 641
[3] (刘仁慈, 王震, 刘冬等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究[J]. 金属学报, 2013, 49: 641)
[4] Aspinwall D K, Dewes R C, Mantle A L.The machining of γ-TiAl intermetallic alloys[J]. CIRP Ann.-Manuf. Technol., 2005, 54: 99
[5] Peng Y B, Chen F, Wang M Z, et al.Relationship between mechanical properties and lamellar orientation of PST crystals in Ti-45Al-8Nb alloy[J]. Acta Metall. Sin., 2013, 49: 1457
[5] (彭英博, 陈锋, 王敏智等. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J]. 金属学报, 2013, 49: 1457)
[6] Kad B K, Dao M, Asaro R J. Numerical simulations of stress-strain behavior in two-phase α2+γ lamellar TiAl alloys [J]. Mater. Sci. Eng., 1995, A192-193: 97
[7] Su J L, Lin G F, Zheng S H.Effects of grain size and lamellar thickness on yield strength of fully lamellar γ-TiAl based alloys[J]. J. Aeronaut. Mater., 2009, 29(4): 1
[7] (苏继龙, 林高飞, 郑书河. 晶粒尺寸和片层厚度对全片层γ-TiAl基合金屈服强度的影响[J]. 航空材料学报, 2009, 29(4): 1)
[8] Su J L, Hu G K.Micromechanical study on yield stress and the effects of twinning for γ-TiAl-based PST crystals[J]. Acta Metall. Sin., 2005, 41: 1243
[8] (苏继龙, 胡更开. γ-TiAl基PST晶体的屈服应力及孪晶影响的细观力学研究[J]. 金属学报, 2005, 41: 1243)
[9] Inui H, Oh M H, Nakamura A, et al.Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl[J]. Acta Metall. Mater., 1992, 40: 3095
[10] Lin J G, Zhou Y J, Zhang Y G, et al.Microstructure and high-temperature compression behavior of Ti-48Al PST crystals[J]. J. Aeronaut. Mater., 1998, 18(1): 1
[10] (林建国, 周亚建, 张永刚等. Ti-48Al合金PST晶体显微组织及高温压缩性能[J]. 航空材料学报, 1998, 18(1): 1)
[11] Zheng R T, Zhang Y G, Chen C Q, et al.Influence of grain boundary on the fracture toughness of full lamellar γ-TiAl alloys[J]. Rare Met. Mater. Eng., 2003, 32: 1003
[11] (郑瑞廷, 张永刚, 陈昌麒等. 晶界对全片层组织γ-TiAl合金断裂韧性的影响[J]. 稀有金属材料与工程, 2003, 32: 1003)
[12] Fu L F, Lin J G, Cao G X, et al.Relationship between yield strength and microstructure of a fully lamellar TiAl-based alloy[J]. Rare Met. Mater. Eng., 2001, 30: 178
[12] (付连峰, 林建国, 曹国鑫等. 全片层TiAl基合金的屈服强度与显微组织关系[J]. 稀有金属材料与工程, 2001, 30: 178)
[13] Priarone P C, Rizzuti S, Rotella G, et al.Tool wear and surface quality in milling of a gamma-TiAl intermetallic[J]. Int. J. Adv. Manuf. Technol., 2012, 61: 25
[14] Pérez R G V. Wear mechanisms of WC inserts in face milling of gamma titanium aluminides[J]. Wear, 2005, 259: 1160
[15] Priarone P C, Rizzuti S, Settineri L, et al.Effects of cutting angle, edge preparation, and nano-structured coating on milling performance of a gamma titanium aluminide[J]. J. Mater. Process. Technol., 2012, 212: 2619
[16] Kolahdouz S, Hadi M, Arezoo B, et al.Investigation of surface integrity in high speed milling of gamma titanium aluminide under dry and minimum quantity lubricant conditions[J]. Proc. CIRP, 2015, 26: 367
[17] Klocke F, Settineri L, Lung D, et al.High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity[J]. Wear, 2013, 302: 1136
[18] Hood R, Aspinwall D K, Sage C, et al.High speed ball nose end milling of γ-TiAl alloys[J]. Intermetallics, 2013, 32: 284
[19] Mantle A L, Aspinwall D K.Surface integrity of a high speed milled gamma titanium aluminide[J]. J. Mater. Process. Technol., 2001, 118: 143
[20] Hood R, Aspinwall D K, Soo S L, et al.Workpiece surface integrity when slot milling γ-TiAl intermetallic alloy[J]. CIRP Ann.-Manuf. Technol., 2014, 63: 53
[21] Fu Z T, Yang W Y, Zeng S Q, et al.Identification of constitutive model parameters for nickel aluminum bronze in machining[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1105
[22] Wu Q, Zhang Y D, Zhang H W.Corner-milling of thin walled cavities on aeronautical components[J]. Chin. J. Aeronaut., 2009, 22: 677
[23] Dong H Y, Ke Y L.Study on machining deformation of aircraft monolithic component by FEM and experiment[J]. Chin. J. Aeronaut., 2006, 19: 247
[24] Wang S.An optimal method for elastoplastic finite element analysis[J]. Acta Mech. Solida Sin., 1990, 11: 272
[24] (王苏. 弹塑性有限元的一种最优化方法[J]. 固体力学学报, 1990, 11: 272)
[25] Gasik M M.Elastic properties of lamellar Ti-Al alloys[J]. Comp. Mater. Sci., 2009, 47: 206
[26] Zhou L, Wang Y, Ma Z Y, et al.Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites[J]. Int. J. Mach. Tool. Manu., 2014, 84: 9
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[3] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[4] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[5] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[6] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[7] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[8] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[9] MA Rongyao, MU Xin, LIU Bo, WANG Changgang, WEI Xin, ZHAO Lin, DONG Junhua, KE Wei. Effect of Hydrostatic Pressure on Corrosion Behavior of Ultra Pure Al Coupled with Ultra Pure Fe[J]. 金属学报, 2019, 55(12): 1593-1605.
[10] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[11] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[12] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[13] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[14] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[15] Qingsong ZHANG,Zhenyu ZHU,Jiewei GAO,Guangze DAI,Lei XU,Jian FENG. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel[J]. 金属学报, 2017, 53(3): 307-315.
No Suggested Reading articles found!