Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (2): 209-215    DOI: 10.11900/0412.1961.2014.00343
Current Issue | Archive | Adv Search |
EFFECT OF INTERLAYERS ON THE MICROSTRUC-TURE AND SHEAR STRENGTH OF ALUMINA CERAMIC AND 1Cr18Ni9Ti STAINLESS STEEL BRAZED BONDING
LIU Yi1,2(), JIANG Guofeng2, XU Kun1, LUO Ximing1, CHEN Dengquan1, LI Wei1
1 Sino-Platinum Metals Co. Ltd, Kunming 650106
2 Kunming Institute of Precious Metals, Kunming 650106
Cite this article: 

LIU Yi, JIANG Guofeng, XU Kun, LUO Ximing, CHEN Dengquan, LI Wei. EFFECT OF INTERLAYERS ON THE MICROSTRUC-TURE AND SHEAR STRENGTH OF ALUMINA CERAMIC AND 1Cr18Ni9Ti STAINLESS STEEL BRAZED BONDING. Acta Metall Sin, 2015, 51(2): 209-215.

Download:  HTML  PDF(4599KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, there have been great efforts focused on joining ceramics to metals to establish processes for a wide range of industrial uses. Several important problems, however, still remain unsolved. Among them, how to produce atomic bonds at ceramic/metal interfaces and how to minimize the residual stress due to large thermal expansion mismatch between two constituents are the most critical. The thermal expansion mismatch effect is a serious problem because, even if a strong interface could be achieved, joints with large residual stress are easily broken. Therefore, it is desirable to reduce the magnitude of the residual stress. Some researchers have succeeded in achieving a strong joint between alumina and stainless steel by using a soft metallic interlayer. In this study, the effects of interlayers of nickel, copper and copper coated with nickel on the microstructure and shear strength of alumina ceramic and 1Cr18Ni9Ti stainless steel bonding with Ag-Cu-Ti filler metal were investigated. The results indicated that, when using copper as an interlayer, sufficient interfacial reaction between the ceramic and the filler metal could obtain. However, when using nickel as an interlayer, resulting in an insufficient reaction between the ceramic and the filler metal and the formation of large amount Ni3Ti intermetallic compounds, and thus, the strength of the joint decreased heavily. It is very interesting that when using copper coated with Ni, the existence of the small amount of nickel didn't affect the activity of titanium in the filler metal, meanwhile, it decreased the effect of the filler metal on the solubility of copper. Compared with copper and Ni interlayer, this interlayer could reduce interfacial residual stress more effectively. And the shear strength of 109 MPa was obtained when the thickness of Cu was 0.2 mm coated with 30 μm thick nickel。

Key words:  metallic interlayer      Al2O3 ceramic      1Cr18Ni9Ti stainless steel      shear strength     
Received:  27 June 2014     
ZTFLH:  TG132  
Fund: Supported by Applied Basic Research Project of Yunnan Province (No.2010ZC56)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00343     OR     https://www.ams.org.cn/EN/Y2015/V51/I2/209

Fig.1  Assembly sketch schematic of joining samples
Material Linear expansion coefficient
α / 10-6 K-1
Elastic modulus
E / GPa
Yield Strength
s0.2 / MPa
Density
r / (g·cm-3)
Al2O3 8.0 382 - 3.90
1Cr18Ni9Ti 20 206 197 7.93
Ni 13 210 148 8.88
Cu 17 124 60 8.96
Table 1  Physical properties of the base metal and interlayers[7,8,18,19]
Fig.2  Brazing craft curve
Fig.3  Assembly sketch schematic of the shear samples
Fig.4  Microstructures of the bonding range of brazed joints with 0.4 mm thickness interlayers of copper (a), nickel (b), and copper coated with 50 μm thick nickel layer (c)
Fig.5  Images of the interfacial reaction layer between ceramic and filler metal bonded with 0.4 mm thickness interlayers of copper (a), nickel (b), and copper coated with 40 μm thick nickel layer (c)
Interlayer metal Point Ag Cu Ti O Al Ni
Cu 1 2.38 96.24 1.38
2 85.32 14.68
3 1.06 33.47 36.13 24.31 5.03
Ni 1 1.64 85.43 1.38 12.93
2 86.53 10.02 3.45
3 4.93 24.17 70.90
Cu coated with 1 2.43 91.46 0.85 4.52
Ni 2 87.93 2.67 1.65 1.32
3 4.39 24.20 71.44
4 1.97 28.59 31.18 34.69 2.92
Table 2  EDS analysis of the joining layer in Fig.5
Fig.6  SEM images of the bonding range of brazed joints with 20 μm (a), 30 μm (b), and 40 μm (c) thickness of nickel layers (Arrows show filler metals)
Fig.7  Effect of thickness of copper interlayer coated with 30 μm thickness nickel on the strength of brazed joint
Fig.8  SEM image (a) and the element distributions of Cu (b), Ni (c), O (d) and Ti (e) of the interfacial reaction layer between ceramic and filler metal bonded with an interlayer of copper coated with 30 mm thickness nickel
[1] Nicholas M G. Joining of Ceramics. London: Chapman and Hall Ltd, 1990: 1
[2] Schwartz M M. Ceramic Joining. Material park, Ohio: ASM International, 1990: 1
[3] Park J W, Mendez P F, Eagar T W. Acta Mater, 2002; 50: 883
[4] Zhang J X, Chandel R S, Chen Y Z, Seow H P. J Mater Process Technol, 2002; 122: 220
[5] Li Z R, Fan J X, Feng J C. Aerosp Mater Technol, 2008; (4): 6
(李卓然, 樊建新, 冯吉才. 宇航材料工艺, 2008; (4): 6)
[6] Xian A P, Si C Y. J Mater Sci, 1992; 27: 1560
[7] Huang X L, Lin S, Xiao J M. Trans China Weld Inst, 1998; 19: 216
(黄小丽, 林 实, 肖纪美. 焊接学报, 1998; 19: 216)
[8] Huang X L, Lin S, Xiao J M, Chu J X. Mater Sci Eng, 1996; 14(3): 58
(黄小丽, 林 实, 肖纪美, 楚建新. 材料科学与工程, 1996; 14(3): 58)
[9] Zou G S, Ren J L, Wu A P, Peng Z S, Zeng W J. Mater Rev, 1999; 13(2): 16
(邹贵生, 任家烈, 吴爱萍, 彭真山, 曾文军. 材料导报, 1999; 13(2): 16)
[10] Xian A P, Si C Y. Acta Metall Sin, 1991; 27: 421
(冼爱平, 斯重遥. 金属学报, 1991; 27: 421)
[11] Zhou Y, Bao F H, Ren J L, North T H. Mater Sci Technol, 1991; 7: 863
[12] Wang Y, He P, Feng J C, Zhang L X, Gu X L, Wang D Y. Trans Chin Weld Inst, 2007; 28(4): 13
(王 颖, 何 鹏, 冯吉才, 张丽霞,  顾小龙, 王大勇. 焊接学报, 2007; 28(4): 13)
[13] Suganuma K, Okamoto T, Koizumi M, Kamachi K. J Mater Sci,1987; 22: 3561
[14] Suganuma K. J Mater Sci, 1991; 26: 6144
[15] Zhu M U, Chung D D L. J Mater Sci, 1997; 32: 5321
[16] Shirzadi A A, Zhu Y, Bhadeshia H K D H. Mater Sci Eng, 2008; A496: 501
[17] Tang Q, Chu J X, Zhang X Y. Electros Proc Technol, 2001; 22: 166
(唐 群, 楚建新, 张晓勇. 电子工艺技术, 2001; 22: 166)
[18] Hao H Q, Wang Y L, Jin Z H, Wang X T. J Mater Sci, 1995; 30: 4107
[19] Zou X. Brazing. Beijing: China Machine Press, 1997: 392
(邹 僖. 钎焊. 北京: 机械工业出版社, 1997: 392)
[20] Valette C, Devismes M F, Voytovych R, Eustathopoulos N. Scr Mater, 2005; 52: 1
[21] Arróyave R, Eagar T W. Acta Mater, 2003; 51: 4871
[22] Jocelyn L W. Master Thesis, Massachusetts Institute of Technology, Cambridge, USA, 2001
[23] Torvund T, Grong Ø, Akselsen O M, UlvensØen J H. J Mater Sci, 1997; 32: 4437
[24] Zhu D Y, Wang Y L, Jin Z H. Ordnance Mater Sci Eng, 1998; 21(20): 22
(朱定一, 王永兰, 金志浩. 兵器材料科学与工程, 1998; 21(20): 22)
[25] Wang X Y, Li Y, Wei S Z, Xu L J, Ma X D. New Technol New Proc, 2010; (5): 85
(王新阳, 李 炎, 魏世忠, 徐流杰, 马向东. 新技术新工艺, 2010; (5): 85)
[26] Li Z R, Fan J X, Feng J C. J Mater Eng, 2008; (9): 1
(李卓然, 樊建新, 冯吉才. 材料工程, 2008; (9): 1)
[1] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[2] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[3] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[4] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[5] Zhi JIANG,Yanhong TIAN,Su DING. SYNTHESIS OF Sn3.5Ag0.5Cu NANOPARTICLE SOLDERS AND SOLDERING MECHANISM[J]. 金属学报, 2016, 52(1): 105-112.
[6] YANG Hao, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, WANG Qi, LI Dehua. INFLUENCE OF THE COMPOSITION OF Zn-Al FILLER METAL ON THE INTERFACIAL STRUCTURE AND PROPERTY OF Cu/Zn-Al/Al BRAZED JOINT[J]. 金属学报, 2015, 51(3): 364-370.
[7] TAN Xianghu,SHAN Jiguo,REN Jialie. EFFECTS OF Cr PLATING LAYER ON SHEAR STRENGTH AND INTERFACE BONDING CHARACTERISTICS OF MILD STEEL/CFRP JOINT BY LASER HEATING[J]. 金属学报, 2013, 49(6): 751-756.
[8] . EFFECT OF Bi ON SHEAR STRENGTH OF Sn3Ag0.5Cu-xBi/Cu SOLDER JOINTS[J]. 金属学报, 2008, 44(4): 473-477 .
[9] NIU Lin; CAO Chunan; LIN Haichao (State Key Laboratary for Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015)Correspondent: NIU Lin; Tel: (024)23915893; Fax: (094)23894149; E-mail: lin.h.c@icpm.syb.ac.cn. EFFECT OF POTENTIAL PERTURBATION POLARIZATION ON THE STRESS CORROSION CRACKING OF 1Cr18Ni9Ti STAINLESS STEEL[J]. 金属学报, 1998, 34(9): 959-965.
No Suggested Reading articles found!