Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 659-666    DOI: 10.3724/SP.J.1037.2014.00027
Current Issue | Archive | Adv Search |
CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃
XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

XU Qiufa, PANG Xiaolu, LIU Quanlin, GAO Kewei. CREVICE CORROSION OF LOW ALLOY STEEL AND CARBON STEEL IN THE SIMULATED GROUNDWATER AT 90 ℃. Acta Metall Sin, 2014, 50(6): 659-666.

Download:  HTML  PDF(7553KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon steel and low alloy steel as candidates of high-level radioactive waste packaging materials,will undergo groundwater corrosion during long term disposal in underground repository, so it is necessary to study the corrosion behaviors of carbon steel and low alloy steel in the specific environment. Crevice corrosion behaviors of carbon steel Q235 and low alloy weathering steel Corten A were studied in a simulated groundwater at 90 ℃ through immersion tests and electrochemical measurements. SEM, EDS and Raman spectra were employed to analyze the corrosion product scales. The results show that both steels occured crevice corrosion and the crevice corrosion depth increased with corrosion time. Corten A underwent more serious crevice corrosion than Q235. In neutral or acidic solution, the corrosion resistance of Corten A was superior to Q235, but when the pH value of the solution was lower than 1, Corten A exhibited lower corrosion resistance than Q235. The alloying elements Cr, Cu and Si in Corten A were harmful to the resistance to crevice corrosion in the solution.

Key words:  high-level radioactive waste      groundwater      low alloy steel      carbon steel      crevice corrosion     
Received:  13 January 2014     
ZTFLH:  TG172.3  
Fund: Supported by National Natural Science Foundation of China (No.51271024)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00027     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/659

Steel C Si Mn P S Cr Ni Cu Fe
Q235 0.18 0.25 0.50 0.016 0.018 - - - Bal.
Corten A 0.08 0.34 0.40 0.090 0.001 0.46 0.14 0.32 Bal.
Table 1  Chemical compositions of Q235 and Corten A

(mass fraction / %)

Fig.1  Microstructures of carbon steel Q235 (a) and low alloy steel Corten A (b)
Fig.2  Morphologies of Q235 (a, c, e) and Corten A (b, d, f) crevice after corrosion product removal at corrosion times of 30 d (a, b), 90 d (c, d) and 180 d (e, f)
Fig.3  SEM morphologies of Q235 (a, c, e) and Corten A (b, d, f) inside crevice after corrosion product removal at corrosion times of 30 d (a, b), 90 d (c, d) and 180 d (e, f)
Fig.4  Crevice depth of the two steels at different corrosion times
Fig.5  Morphologies of the corrosion scales on Q235 (a) and Corten A (b) after corrosion for180 d
Fig.6  Raman spectra of corrosion scales on the two steels inside crevice after corrosion for 180 d
Fig.7  Morphologies of corrosion scales (left) and corresponding EDS analysis (right) on Q235 (a) and Corten A (b) inside crevice after corrosion for 180 d
Fig.8  Low (a) and high (b~f) enlarged SEM images of corrosion scales for different areas on the Corten A inside crevice after corrosion for 180 d
Fig.9  Polarization curves of the two steels in the deaerated groundwater with different pH
Area C O Fe S Cl P Si Cr Cu
1 16.17 26.89 53.72 1.33 1.14 - 0.33 0.43 -
2 15.71 28.61 53.93 1.75 - - - - -
3 20.13 25.72 46.39 1.42 - 0.23 1.50 2.37 2.23
4 17.43 28.59 52.86 0.67 - - 0.45 - -
5 17.85 35.09 37.69 1.76 - 0.58 2.62 2.70 1.70
Table 2  EDS analyses of areas 1~5 in Figs.8d~f

(mass fraction / %)

pH value Steel Ecorr / V icorr / (mA·cm-2) ba / (V·d-1) bc / (V·d-1) Rp / (Ω·cm-2) Corrosion rate / (mm·a-1)
7.2 Q235 -0.718±0.009 0.0471±0.004 0.103±0.009 0.285±0.04 699±53 0.0286±0.02
Corten A -0.747±0.009 0.0437±0.009 0.129±0.001 0.237±0.05 832±88 0.0240±0.003
2.5 Q235 -0.612±0.02 1.450±0.4 0.318±0.03 0.349±0.1 52±17 0.414±0.12
Corten A -0.599±0.01 0.913±0.2 0.276±0.04 0.281±0.02 68±13 0.301±0.06
1.0 Q235 -0.512±0.01 1.820±0.5 0.306±0.03 0.340±0.05 39±6 0.515±0.08
Corten A -0.539±0.01 2.130±0.2 0.388±0.08 0.355±0.08 37±3 0.544±0.05
Table 3  Potentiodynamic polarization test results of the two steels in the deaerated groundwater with different pH
[1] Yin K J, Li C, Qiu S Y, Luo Q. Nucl Power Eng, 2007; 28(suppl): 76
(尹开锯, 李 聪, 邱邵宇, 罗 强. 核动力工程, 2007; 28(增刊): 76)
[2] Armijo J S, Kar P, Misra M. Nucl Eng Des, 2006; 236: 2489
[3] Yang X M. J Xianyang Nor Univ, 2008; 23(6): 18
(杨晓梅. 咸阳师范学院学报, 2008; 23(6): 18)
[4] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. J Mater Eng, 2011; (9): 62
(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 材料工程, 2011; (9): 62)
[5] Wang J H, Wei F I, Shih H C. Corrosion, 1996; 52: 900
[6] Stratman M, Bohnenkamp K. Corros Sci, 1987; 27: 905
[7] Choi Y S, Kim J G. Corrosion, 2000; 56: 1202
[8] Yu Q C, Wang Z Y, Wang C. Acta Metall Sin, 2010; 46: 1133
(于全成, 王振尧, 汪 川. 金属学报, 2010; 46: 1133)
[9] Huang G Q, Dai M A. Corro Sci Prot Technol, 2000; 12: 315
(黄桂桥, 戴明安. 腐蚀科学与防护技术, 2000; 12: 315)
[10] Zhang Q F, Tu F Z, Zhu X R, Huang G Q, Zhang L. Corros Prot, 2001; 22: 517
(张启富, 涂抚洲, 朱相荣, 黄贵桥, 张 陆. 腐蚀与防护, 2001; 22: 517)
[11] Roy A K, Fleming D L, Lum B Y. Corrosion-1999, San Antonio: NACE, 1999: 465
[12] Hornus E C, Rodriguez M A. Procedia Mater Sci, 2012; 1: 251
[13] Liu Z Y, Dong C F, Jia Z J, Li X G. Acta Metall Sin, 2011; 47: 1009
(刘智勇, 董超芳, 贾志军, 李晓刚. 金属学报, 2011; 47: 1009)
[14] Owens F J, Orosz J. Solid State Commun, 2006; 138: 95
[15] Sun J B, Liu W, Chang W, Zhang Z H, Li Z T, Yu T, Lu M X. Acta Metall Sin, 2009; 45: 84
(孙建波, 刘 伟, 常 炜, 张忠铧, 李忠涛, 于 湉, 路明旭. 金属学报, 2009; 45: 84)
[16] Hong J H, Lee S H, Kim J G, Yoon J B. Corros Sci, 2012; 54: 174
[17] Yang X Z,Yang W. Corrosion Electrochemical Thermodynamics Potential - pH Diagram and Application. Beijing: Chemical Industry Press, 1991: 153
(杨熙珍,杨 武. 金属腐蚀电化学热力学电位-pH图及其应用. 北京: 北京工业出版社, 1991: 153)
[18] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145
(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)
[19] Wang J M, Chen X Q, Li G M. J Univ Sci Technol Beijing (Engl Ed), 2004; 11: 555
[20] Ishikawa T, Maeda A, Kandori K. Corrosion, 2006; 62: 559
[21] Zhang C, Cai D, Liao B, Zhao T, Fan Y. Mater Lett, 2004; 58: 1524
[22] Yang Z N, Zhang Z, Su J X, Zhang J Q, Li Z G, Yang A N, Cao C N. Acta Metall Sin, 2005; 41: 860
(杨仲年, 张昭, 苏景新, 张鉴清, 李自刚, 杨阿娜, 曹楚南. 金属学报, 2005; 41: 860)
[23] Department of ChemicalChemical Machinery Research Institute. Corrosion and Protection Manual. Beijing: Chemical Industry Press, 1987: 59
(化学部化工机械研究院. 腐蚀与防护手册. 北京: 化学工业出版社, 1987: 59)
[24] Lee J-B. Mater Chem Phys, 2006; 99: 224
[25] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2010; 46: 748
(曹国良,李国明, 陈珊, 常万顺, 陈学群. 金属学报, 2010; 46: 748)
[26] Guo J N, Huang Y M, Zeng R S. Marine Sci, 1986; 10: 34
(郭津年, 黄亚敏, 曾仁森. 海洋科学, 1986; 10: 34)
[27] Liu D Y, Wei K J, Li W J, Huang G Q. J Chin Soc Corro Prot, 2003; 23: 7
(刘大杨, 魏开金, 李文军, 黄桂桥. 中国腐蚀与防护学报, 2003; 23: 7)
[28] Yang W, Ni R C, Hua H Z. Corros Sci, 1984; 24: 691
[29] Yang W,Gu R X,Li J S,Xiao J X. The Local Corrosion of Metals. Beijing: Chemical Industry Press, 1995: 126, 54
(杨 武,顾睿祥,黎樵燊,肖京先. 金属的局部腐蚀. 北京: 化学工业出版社, 1995: 126, 54)
[30] Lizlovs E A. Corrosion, 1966; 22: 279
[31] Seo M, Hultquist G, Leygraf C, Sato N. Corros Sci, 1986; 26: 949
[32] Oh K N, Toor I H, Ahn S H, Kwon H S. Corrosion, 2013; 69: 560
[33] Jointtt Res. Gp. of Corrosion, Shanghai Institute of Iron and Steel Research & Changchun Institute of Applied Chemistry, Academia Sinica. Acta Metall Sin, 1979; 15: 227
(上海钢铁研究所和中国科学院长春应用化学研究所的金属腐蚀组. 金属学报, 1979; 15: 227)
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[3] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] LIU Yuwei, GU Tianzhen, WANG Zhenyao, WANG Chuan, CAO Gongwang. Corrosion Behavior of Q235 and Q450NQR1 Exposed to Marine Atmospheric Environment in Nansha, China for 34 Months[J]. 金属学报, 2022, 58(12): 1623-1632.
[6] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
[7] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[8] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[9] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[10] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[11] Zheng MA, Xi LU, Ming GAO, Lili TAN, Ke YANG. Effect of Crevice Corrosion on the Degradation Rate ofFe-30Mn-1C Alloy[J]. 金属学报, 2018, 54(7): 1010-1018.
[12] Zibing HOU, Rui XU, Yi CHANG, Jianghai CAO, Guanghua WEN, Ping TANG. Time-Series Fluctuation Characteristics of Segregation Carbon Element Distribution Along Casting Direction in High Carbon Continuous Casting Billet[J]. 金属学报, 2018, 54(6): 851-858.
[13] Jianan ZOU, Xiaolu PANG, Kewei GAO. Crevice Corrosion of X70 and 3Cr Low Alloy Steels Under Supercritical CO2 Condition[J]. 金属学报, 2018, 54(4): 537-546.
[14] Huidong WU, Goro MIYAMOTO, Zhigang YANG, Chi ZHANG, Hao CHEN, Tadashi FURUHARA. Incomplete Bainite Transformation Accompanied with Cementite Precipitation in Fe-1.5(3.0)%Si-0.4%C Alloys[J]. 金属学报, 2018, 54(3): 367-376.
[15] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
No Suggested Reading articles found!