Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 387-394    DOI: 10.3724/SP.J.1037.2013.00634
Current Issue | Archive | Adv Search |
MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION
SUN Xiurong, WANG Huizhen, YANG Ping(), MAO Weimin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin. MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION. Acta Metall Sin, 2014, 50(4): 387-394.

Download:  HTML  PDF(8295KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dynamic compression tests on high manganese TRIP steel, pure copper, IF steel and armor steel were conducted on Hopkinson bar at the strain rate of 103~104 s-1 to make comparisons of impact resistance and microstructural features. Results show that under dynamic compression, adiabatic shear bands (ASBs) do not occur easily on pure copper and IF steel. In addition, both pure copper and IF steel show a weak resistance to impact loading due to the poor work hardening capability. The ASB occurs quickly in armor steel containing martensite and the steel shows higher residual strength, which renders it suitable application in the condition of high speed deformation. TRIP steel consisting mainly of austenite has the highest work hardening rate and the α′-M induced by deformation can delay the ASBs formation and prevent the crack extension, manifesting that it is suitable for the use at high speed deformation. Elongated subgrains and low angle grain boundaries are found within the shear bands in pure copper and IF steel with weak microtextures, whereas the ASBs in both TRIP steel and armor steel demonstrate small equiaxed grains and high angle grain boundaries. Strong fcc shearing-type microtexture of {111}-{112}<110> and weak bcc shearing-type microtexture of {110}<111> are formed within ASBs of TRIP steel and armor steel respectively.

Key words:  adiabatic shear band      microtexture      dynamic compress      impact resistance     
Received:  08 October 2013     
ZTFLH:  TG142.33  
  TG146.11  
Fund: Supported by National Natural Science Foundation of China (No.51271028)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00634     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/387

Material C Mn Si Al Cr Ni Mo Ti Nb Fe
TRIP steel 0.036 19.40 3.41 2.28 - - - - - Bal.
Armor steel 0.13 0.32 0.29 0.031 0.88 0.85 0.23 - - Bal.
IF steel 0.0028 0.150 0.001 0.035 0.018 - - 0.031 0.017 Bal.
表1  3种钢的化学成分
Fig.1  

Hopkinson压杆示意图及柱型样、帽型样尺寸

Fig.2  

4种材料原始组织的SEM像

Fig.3  

装甲钢的晶粒取向差分布图

Material Impact load / MPa Strain rate / s-1 Reduction of H / %
TRIP steel 0.30 1.2×104 9.7
0.50 1.7×104 21.6
0.55 1.9×104 23.2
0.60 2.0×104 35.0
Pure Cu 0.30 1.3×104 21.2
0.55 1.9×104 40.0
IF steel 0.30 1.1×104 10.0
0.55 1.7×104 26.4
Armor steel 0.20 0.3×104 0.7
0.25 0.4×104 2.2
0.30 0.45×104 4.0
表2  4种材料高速冲击力学参数
Fig.4  

4种材料柱型样品的真应力-真应变曲线

Fig.5  

4种金属帽型样品的剪切应力-时间曲线

Fig.6  

4种材料帽型样品剪切区域形貌像(SEM图)及ASBs内部电子通道衬度像(ECC图)

Fig.7  

TRIP钢ASBs的取向成像图和极图

Fig.8  

3种材料剪切区域取向成像图和极图

Fig.9  

4种材料剪切区域Σ3和Σ11晶界含量

Fig.10  

4种材料剪切组织内部晶粒取向差分布图

[1] Molinari A, Musquar C, Sutter G. Int J Plast, 2002; 18: 443
[2] Lee W S, Sue W C, Lin C F, Wu C J. J Mater Process Technol, 2000; 100: 116
[3] Timothy S P, Hutchings I M. Acta Metall, 1985; 33: 667
[4] Duan Z Q, Cheng G Q, Li S X, Huang D W. Acta Metall Sin, 2003; 39: 486
(段占强, 程国强, 李守新, 黄德武. 金属学报, 2003; 39: 486)
[5] Zener C, Hollomon J H. J Appl Phys, 1944; 15: 22
[6] Tang L, Chen Z Y, Zhan C K, Yang X Y, Liu C M. Metall Mater Trans, 2013; 44A: 793
[7] Chen Z Y, Tang L, Zhan C K, Yang X Y. Acta Metall Sin, 2012; 48: 315
(陈志永, 唐 林, 詹从堃, 杨续跃. 金属学报, 2012; 48: 315)
[8] Xu Y B, Zhong W L, Chen Y J, Shen L T, Liu Q, Bai Y L, Meyers M A. Mater Sci Eng, 2001; A299: 287
[9] Yang Y, Li X M, Tong X L, Zhang Q M, Xu C Y. Mater Sci Eng, 2011; A528: 3130
[10] Osovski S, Rittel D, Landau P, Venkert A. Scr Mater, 2012; 66: 9
[11] Murr L E, Ramirez A C, Gaytan S M, Lopez M I, Martinez E Y, Hernandez D H, Martinez E. Mater Sci Eng, 2009; A516: 205
[12] Peirs J, Verleysen P, Degrieck J, Coghe F. Int J Impact Eng, 2010; 37: 703.
[13] Lins J F C, Sandim H R Z, Kestenbach H J, Raabe D, Vecchio K S. Mater Sci Eng, 2007; A457: 205
[14] Duan C Z, Zhang L C. Mater Sci Eng, 2012; A532: 111
[15] Tang L, Chen Z Y, Zhan C K, Yang X Y, Liu C M, Cai H N. Mater Charact, 2012; 64: 21
[16] Yuan F P, Jiang P, Wu X L. Int J Impact Eng, 2012; 50: 1
[17] Andrade U, Meyers M A, Vecchio K S, Chokshi A H. Acta Metall Mater, 1994; 42: 3183
[18] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655
[19] Xu Y B, Yang H J, Meyers M A. Scr Mater, 2008; 58: 691
[20] Talonen J, Hänninen H, Nenonen P, Pape G. Metall Mater Trans, 2005; 36A: 421
[21] Kokawa H, Watanabe T, Karashima S. Philos Mag, 1981; 44A: 1239
[1] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[2] LI Yubin, WANG Wei, HE Jianjun, ZHANG Zhiqiang, ZHANG Tongyan. MICROSTRUCTURE AND MECHANICAL PROPERTY OF LASER WELDED JOINT FOR HYPOEUTECTOID U-Nb ALLOY[J]. 金属学报, 2014, 50(3): 379-386.
[3] YANG Xuyue SUN Huan WU Xinxing MA Jijun QIN Jia HUO Qinghuan. EVOLUTIONS OF MICROSTRUCTURE AND MICROTEXTURE IN AZ21 Mg ALLOY DURING MULTI–DIRECTIONAL FORGING UNDER DECREASING TEMPERATURE CONDITIONS[J]. 金属学报, 2012, 48(2): 129-134.
[4] WU Xinxing YANG Xuyue ZHANG Lei ZHANG Zhiling. EFFECT OF ORIGINAL ORIENTATION ON MICROTEXTURE EVOLUTION OF AZ31 Mg ALLOY[J]. 金属学报, 2011, 47(2): 140-144.
[5] CHEN Zhiyong CAI Hongnian WANG Fuchi TAN Chengwen ZHAN Congkun LIU Chuming. INVESTIGATION ON ANISOTROPY OF DYNAMIC COMPRESSIVE MECHANICAL PROPERTIES OF COLD--ROLLED Cu SHEET[J]. 金属学报, 2009, 45(2): 143-150.
[6] . STUDY OF ADIABATIC SHEAR BANDS IN FATIGUED COPPER SINGLE CRYATALS WITH DIFFERENT ORIENTATIONS UNDER HIGH VELOCITY IMPACT[J]. 金属学报, 2006, 42(3): 245-250 .
[7] ZHANG Baofa;SHEN Wanci;LIU Yingjie; WANG Yuanfei;TANG Xiangyun (Tsinghua University;Beijing 100084). ADIABATIC SHEAR BAND IN WHITE-ETCHING LAYER[J]. 金属学报, 1997, 33(11): 1161-1164.
[8] DONG Han; LI Guifen (Central Iron and Steel Research Institute; Ministry of Metallurgical Industry.;Beijing 100081)CHEN Nanping(Tsinghua University; Beijing 100084). MICROSTRUCTURE AND HARDNESS OF ADIABATIC SHEAR BANDS IN HIGH STRENGTH STEELS[J]. 金属学报, 1996, 32(6): 599-604.
[9] LI Qiang;MA Changxiang;LAI Zuhan(Northeastern University;Shenyang 110006)(Manuscript received 1995-03-06). ADIABATIC SHEAR BAND FORMATION AND ITS MICROSTRUCTURES PRODUCED BY HIGH SPEED PENETRATION IN 30MnCrNiMoB LOW ALLOY STEEL[J]. 金属学报, 1995, 31(23): 505-510.
[10] YANG Yang;ZHANG Xinming(Central-South University of Technology; Changsha); LI Zhenghua; LI Qingyun(North-West Institute for Nonferrous Metal Research; Baoji)(Manuscript received 13 December;1993). IN SITU SEM OBSERVATION ON MICROFRACTURE OF TA2/A3 EXPLOSION CLADDING INTERFACE[J]. 金属学报, 1994, 30(9): 409-415.
[11] ZHANG Futian;LOU Zhifei(State Key Laboratory for Fatigue and Failure-of Materials; Institute of Metal Research;Chinese Academy of Sciences;Shenyang);YE Yugong;LI Duanyi(Institute of Mechanics;Chinese Academy of Sciences;Beijing)(Manuscript received 28 December;1993). BEHAVIOUR OF MICROSTRUCTURE OF Ni9 STEEL UNDER DEFORMING-FRACTURING[J]. 金属学报, 1994, 30(6): 239-247.
No Suggested Reading articles found!