Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1423-1427    DOI: 10.3724/SP.J.1037.2013.00499
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE STRENGTH AND AMBIENT DUCTILITY DEPENDENCES ON Al CONTENTS OF HIGH Nb CONTAINING TiAl ALLOYS
LI Haizhao, ZHANG Ji
China Iron & Steel Research Institute Group, Beijing 100081
Cite this article: 

LI Haizhao, ZHANG Ji. HIGH TEMPERATURE STRENGTH AND AMBIENT DUCTILITY DEPENDENCES ON Al CONTENTS OF HIGH Nb CONTAINING TiAl ALLOYS. Acta Metall Sin, 2013, 49(11): 1423-1427.

Download:  PDF(2891KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of Al contents on the high temperature strength and ambient ductility of cast high Nb containing TiAl alloys were investigated with 7%Nb (mole fraction) addition and Al contents varying from 46%-49%. The macro- and micro-structures were examined. Due to the Nb solid solution strengthening effect, the cast alloy with lowest Al content consisting of a refined lamellar microstructure in equiaxed macro-grains exhibits excellent strength at 900℃ that is comparable with the well developed wrought alloys. The alloys with Al contents higher than 47% contains mostly or fully lamellar colonies with little orientation differences in macro-columnar crystals. Probably because of the lamellar structures with orientation hard to deform and the twining reinforcement, those alloys exhibit the more preponderant strength at 900℃ that can be as high as 595 MPa in the alloy with 47.5%Al. While, the effect of Al contents on ambient ductility becomes reversed as the Hard-to deform lamellar structures present very poor plastic elongation after tensile fractures.

Key words:  cast high Nb containing TiAl alloy      high temperature strength      ambient ductility     
Received:  19 August 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00499     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1423

[1] Chen G L, Zhang W J, Liu Z C, Li S J. In: Kim Y W, Dimiduk D M,Loretto M H eds.,  Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 31

[2] Liu Z C, Lin J P, Li S J, Chen G L.  Intermetallics, 2002; 10: 653
[3] Appel F, Oehring M, Paul J D H, Lorenz U. In: Hemker K J, Dimiduk D M,Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds.,Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 63
[4] Yoshihara M, Kim Y W. In: Kim Y W, Dimiduk D M, Loretto M H eds.,Gamma Titanium Aluminides 1999, Warrendale, PA: TMS, 1999: 753
[5] Zhang W J, Liu Z C, Chen G L, Kim Y W.  Mater Sci Eng, 1999; A271: 416
[6] Zhang W J, Deevi S C, Chen G L.  Intermetallics, 2002; 10: 403
[7] Paul J D H, Appel F, Wagner R.  Acta Mater, 1998; 46: 1075
[8] Appel F, Oehring M, Wagner R.  Intermetallics, 2000; 8: 1283
[9] Brossmann U, Oehring M, Appel F. In: Hemker K J, Dimiduk D M, Clemens H,Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D eds.,Structural Intermetallics 2001, Warrendale, PA: TMS, 2001: 191
[10] Tetsui T, Shindo K, Kaji S, Kobayashi S, Takeyama M.  Intermetallics, 2005; 13: 971
[11] Imaev V M, Imaev R M, Oleneva T I, Khismatullin T G.  Phys Met Metall, 2008; 106: 641
[12] Imayev V, Imayev R, Khismatullin T, Guther V, Beck W, Fecht H J.  Scr Mater,2007; 57: 193
[13] Jarvie D J, Voss D.  Mater Sci Eng, 2005; A413--414: 583
[14] Wu X H.  Intermetallics, 2006; 14: 1114
[15] Oehring M, Stark A, Paul J D H, Lippmann T, Pyczak F.  Intermetallics, 2013; 32: 12
[16] Jung J Y, Park J K, Chun C H.  Intermetallics, 1999; 7: 1033
[17] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D,Kremmer S, Guther V, Smarsly W.  Intermetallics, 2008; 16: 827
[18] Witusiewicz V T, Bondar A A, Hecht U, Rex S, Velikanova T Y.  J Alloys Compd,2008; 465: 64
[19] Blackburn M J. In: Jaffee R I, Promisel N E eds.,The Science, Technology and Application of Titanium. Oxford: Pergamon Press, 1970: 663
[20] Kim Y W.  JOM, 1989; 41(7): 24
[21] Appel F, Paul J D H, Oehring M, Buque C, Klinkenberg C, Carneiro T. In:Kim Y W, Carneiro T eds.,  Niobium for High Temperature Applications, Warrendale, PA: TMS, 2004: 139
[22] Zhang H X, Wu C X, Yang K.  J Mater Eng, 2009; (S1): 267
(张华霞, 吴昌新, 杨坤. 材料工程, 2009; (S1): 267)
[23] Bor H Y, Wei C N, Jeng R R, Ko P Y.  Mater Chem Phys, 2008; 109: 334
[24] Inui H, Oh M H, Nakamura A, Yamaguchi M.  Acta Metall Mater, 1992; 40: 3095
[25] Yan L, Tang D, Mi Z L, Guo J.  Hot Working Technol, 2005; (8): 15
(严玲, 唐狄, 米振莉, 郭锦. 热加工工艺, 2005; (8): 15)
[26] Li Z X.  PhD Dissertation, Beijing Institute of Aeronautical Materials, 2000
(李臻熙. 北京航空材料研究院博士学位论文, 2000)
[27] Chen G L, Lin J P, Song X P, Wang Y L, Ren Y R. In: Kim Y W, Carneiro T eds.,Niobium for High Temperature Applications, Warrendale, PA: TMS, 2004: 153
[28] Jiang M Z, Zhang J.  J Iron Steel Res, 2003; 15: 552

(姜明智, 张继. 钢铁研究学报, 2003; 15: 552)

[1] Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG,Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21[J]. 金属学报, 2015, 51(10): 1279-1287.
[2] . DEVELOPMENT OF A NEW HIGH STRENGTH AND GOOD HOT CORROSION RESISTANCE FOR LOW SEGREGATION SUPERALLOY DZ68[J]. 金属学报, 2007, 43(4): 422-426 .
[3] YANG Wenying;LU Fanxiu;ZHANG Shouhua University of Science and Techhology Beijing. AN ATTEMPT TO IMPROVE AMBIENT DUCTILITY OF Ni_3Al BY COMPLEX ALLOYING WITH Mn AND B[J]. 金属学报, 1993, 29(1): 39-42.
No Suggested Reading articles found!