Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 763-768    DOI: 10.3724/SP.J.1037.2012.00728
Current Issue | Archive | Adv Search |
EFFECT OF LONG-TERM AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ALLOY C276
LIU Jinxi1,2), ZHANG Jixiang1), LU Yanling2), LI Xiaoke2), LI Zhijun2), ZHOU Xingtai2)
1) College of Mechatronics and Automobile Engineering, Chongqing Jiaotong University, Chongqing 400074
2) Department of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
Cite this article: 

LIU Jinxi, ZHANG Jixiang, LU Yanling, LI Xiaoke, LI Zhijun, ZHOU Xingtai. EFFECT OF LONG-TERM AGING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ALLOY C276. Acta Metall Sin, 2013, 49(6): 763-768.

Download:  PDF(2998KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nickel-based superalloy C276 had become one of the alternative materials in simulation loop of thorium molten salt reactor(TMSR) nuclear power system. The strength and plasticity decay of C276 alloy under high temperature environment for long time will directly threatened the security of simulation loop of TMSR. The microstructure of C276 alloy after long-term aging at 700℃ was studied by TEM and SEM with EDS, and the high temperature mechanical performance of C276 alloy after aging was researched at 700℃ with an universal high-temperature materials testing machine. At the same time, the morphology of tensile fracture was analyzed by SEM. The results show that massive block μ phase and M6C carbides are precipitated after long--term aging with 700℃ at the grain boundaries and within grains of C276 alloy, and the block precipitated phase grains grow up with aging time, some precipitated grains at boundaries extend forward the~interior of based crystal. The alloy is strengthened by the effect of precipitation phase, so the strength is not reduced after long--term aging at 700℃ high temperature. As aging time increases, the plasticity of C276 alloy reduces firstly and then increases to the peak after aging 720 h, and decreases again. However, the plasticity of C276 alloy still maintain well after longer aging time. The high temperature tensile fracture mode of C276 alloy is ductile fracture after long-term aging.

Key words:  nickel-based superalloy C276      long-term aging, mechanical property      precipitation     
Received:  10 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00728     OR     https://www.ams.org.cn/EN/Y2013/V49/I6/763

[1] Rebak R B, Crook P.  Adv Mater Processes, 2000; 157: 37

[2] Akhter J I, Shaikh M A.J Mater Sci Lett, 2001; 20: 333
[3] Turchi P E A, Kaufman L, Liu Z K.Calphad, 2007; 31: 237
[4] Fuchs G E, Dannemann K A, Deragon T C.  Long Term Stability of High Temperature Materials. Pennsylvania: TMS, 1999: 3
[5] Janowski G M, Harmon B S, Pletkn B J.Metall Trans, 1987; 18A: 1341
[6] Pollock T M.  Mater Sci Eng, 1955; B32: 255
[7] Murata Y.J Mater Sci, 1983; 23: 2069
[8] Tawancy H M.J Mater Sci, 1981; 16: 2883
[9] Garossen T J, McCathy G P.  Metall Trans, 1985; 16A: 1213
[10] Liu W C, Chen Z L, Yao M.  Metall Trans, 1999; 30A: 31
[11] Song J X, Xiao C B, Li S S, Han Y F.  Acta Metall Sin, 2002; 38: 250
 (宋尽霞, 肖程波, 李树索, 韩雅芳. 金属学报, 2002; 38: 250)
[12] Zhao S Q, Dong J X, Xie X S.  Chin J Nonferrous Met, 2003; 13: 565
 (赵双群, 董建新, 谢锡善. 中国有色金属学报, 2003; 13; 565)
[13] Ma Y, Lu D G , Mao X P, Zhang L Y, Cai J.  Rare Met Mater Eng, 2010; 39: 1571
 (马雁 , 陆道纲, 毛雪平, 张立殷, 蔡军. 稀有金属材料与工程, 2010; 39: 1571)
[14] Raghavan M, Berkowitz B J, Scanlon J C. Metall Trans, 1982; 13A: 979
[15] Lloyd A C, Shoesmith D W, Mcinyer N S, Noel J J.J Electrochem Soc, 2003; 150: B120
[16] Streicher M A. Corrosion, 1976; 32: 79
[17] Jin W K, Byunq H C, Jin S H. J Korean Inst Met Mater, 2002; 40: 1016
[18] Ahmad M, Akhter J I, Akhtar M, Iqbal M, Ahmed E, Choudhry M A. J Alloys Compd, 2005; 390: 88
[19] Jiao S Y, Zhu G N, Dong J X, Zhang Q Q. J Mater Eng, 2011; (1): 47
 (焦少阳, 朱冠妮, 董建新, 章清泉. 材料工程, 2011; (1): 47)
[20] Shi A J, Dong J X, Zhang M C, Zheng L.  Spec Steel, 2009; 30: 7
 (施爱娟, 董建新, 张麦仓, 郑磊. 特殊钢, 2009; 30: 7)
[21] Tawancy H M.  J Mater Sci, 1996; 31: 3929
[22] Zheng Y R.  Acta Metall Sin, 1999; 35: 1242
 (郑运荣. 金属学报, 1999; 35: 1242)
[23] Cai Y L, Zheng Y R.  Acta Metall Sin, 1982; 18: 30
 (蔡玉林, 郑运荣. 金属学报, 1982; 18: 30)
[24] Ma Y H, Zhao K, Lou L H, Hu Z Q.  J Chin Electr Microsc Soc, 2006; 25(suppl): 116
 (马永会, 赵锴, 楼琅洪, 胡壮麒. 电子显微学报, 2006; 25(增刊): 116)
[25] Zhao M H, Zhang X Y, Jiao L Y, Fu H Z.  Mater Eng, 1992; (sl): 121

 (赵明汉, 张旭瑶, 焦兰英, 傅宏镇. 材料工程, 1992; (sl): 121)

[1] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[7] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[8] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[9] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[10] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[11] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[12] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[13] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[14] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[15] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
No Suggested Reading articles found!