FGH98,fatigue crack growth,γ’phase,grain size," /> FGH98,fatigue crack growth,γ’phase,grain size,"/> FGH98,fatigue crack growth,γ’phase,grain size,"/> 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 71-80    DOI: 10.3724/SP.J.1037.2012.00445
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98
YANG Jian1, DONG Jianxin1, ZHANG Maicang1,JIA Jian2, TAO Yu2
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2.High Temperature Materials Research Institute, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98. Acta Metall Sin, 2013, 49(1): 71-80.

Download:  PDF(1208KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Powder metallurgy superalloys are important materials for manufacturing aero engine turbine disks which are subjected to loading in the forms of fatigue and creep-fatigue in service. In order to meet the increasing demands for advanced aero engines with high thrust-weight ratios, a novel generation of Ni-based powder metallurgy superalloy FGH98 was developed, which was expected to have high strength and good damage tolerance property. For the sake of examining the fatigue crack growth resistance of FGH98, the fatigue crack growth rate of this novel superalloy was investigated at 650 ℃ in air and then compared with those of the first two generations of powder metallurgy superalloys FGH95 and FGH96. The effects of microstructures and hold--time on the fatigue crack growth behavior of FGH98 were studied. It was found that the fatigue crack growth resistance of FGH98 was significantly improved in comparison with those of FGH95 and FGH96. Conducting proper cooling methods after solution could make the secondary and tertiaryγ’ phase precipitate in a uniform order, causing that the alloy could have good fatigue crack propagation resistance. It was also found that FGH98 with coarser grains showed a lower fatigue crack growth rate, especially in the near--threshold regime, and its fatigue crack growth rate increased with increasing hold-time, and correspondingly, its fracture mode changed from a mixture of transgranular-intergranular into pure intergranular.

 
Key words:  FGH98')" href="#">
FGH98      fatigue crack growth      γ’phase      grain size
     
Received:  24 July 2012     
Service
E-mail this article FGH98|fatigue crack growth|γ’phase|grain size”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20988.shtml" name="neirong"> FGH98|fatigue crack growth|γ’phase|grain size">
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00445     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/71

 


[1] Zhang Y W, Shangguan Y H. Powder Metall Ind, 2004; 14(6): 30

(张义文, 上官永恒. 粉末冶金工业, 2004; 14(6): 30)

[2] Zou J W, Wang W X. J Aeronaut Mater, 2006; 26: 244

(邹金文, 汪武祥. 航空材料学报, 2006; 26: 244)

[3] Wang P, Dong J X, Zhang Y W, Xie X S. Rare Met Mater Eng, 2010; 39: 157

(王璞, 董建新, 张义文, 谢锡善. 稀有金属材料与工程, 2010; 39: 157)

[4] Raisson G. Powder Metall, 2008; 50: 10

[5] Cheng X, Dong J X, Zhang M C. World Iron Steel, 2011; 11(5): 43

(程茜, 董建新, 张麦仓. 世界钢铁, 2011; 11(5): 43)

[6] Miao J S, Pollock T M, Jones J W. Acta Mater, 2009; 57: 5964

[7] Findley K O, Saxena A. Metall Mater Trans, 2006; 37A: 1469

[8] Alniak M O, Bedir F. Mater Sci Eng, 2006; B130: 254

[9] Viswanathan G B, Sarosi P M, Whitis D H, Mills M J. Mater Sci Eng, 2005; A400--401: 489

[10] Miao J S, Pollock T M, Jones J W. In: Reed R C, Green K A, Caron P eds.,

 Proceeding of the 11th International Symposium on Superalloy, Warrendale: TMS, 2008: 589

[11] Olson G B, Jou H J, Jung J, Sebastian J T, Misra A, Locci I, Hull D.

In: Reed R C, Green K A, Caron P eds., Proc 11th International Symposium on Superalloy, Warrendale: TMS, 2008: 923

[12] Gabb T P, Telesman J, Kantzos P T, Smith J W, Browning P F. In: Green K A, Pollock T M, Harada H eds.,

 Proc 10th International Symposium on Superalloy, Warrendale: TMS, 2004: 269

[13] Jia J, Tao Y, Zhang Y W. Rare Met, 2009; 28(spec): 136

[14] Liu Y, Tao Y, Jia J. J Aeronaut Mater, 2011; 31(6): 12

(刘洋, 陶宇, 贾建. 航空材料学报, 2011; 31(6): 12)

[15] Liu Y, Tao Y, Jia J. Powder Metall Ind, 2011; 21(2): 14

(刘洋, 陶宇, 贾建. 粉末冶金工业, 2011; 21(2): 14)

[16] Jia J, Tao Y, Zhang Y W. J Iron Steel Res, 2011; 23(suppl): 482

(贾建, 陶宇, 张义文. 钢铁研究学报, 2011; 23(增刊): 482)

[17] Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T. Rare Met Mater Eng, 2011; 40: 1966

(吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛. 稀有金属材料与工程, 2011; 40: 1966)

[18] Leo Prakash D G, Walsh M J, Maclachlan D, Korsunsky A M. Int J Fatigue, 2009; 31: 1966

[19] Pedron J P, Pineau A. Mater Sci Eng, 1982; A56: 143

[20] Suresh S, Zamiski C F, Richie R O. Metall Trans, 1981; 12A: 1435

[21] Jackson M P, Reed R C. Mater Sci Eng, 1999; A259: 85

[22] Telesman J, Gabb T, Garg A, Bonacuse P, Gayda R.

In: Reed R, Green K, Caron P, Gabb T, Fahrmann M, Huron E, Woodward S eds.,

 Proc 11th International Symposium on Superalloy, Warrendale: TMS, 2008: 807

[23] Riedel H, Rice J R. In: Paris P C ed., Proc 12th Conference on Fracture Mechanics,

Special Technical Publication 700, Philadelphia: American Society for Testing and Materials, 1980: 112

[24] Molins R, Hochsteter G, Chassaigne J C, Andrieu E. Acta Mater, 1997; 45: 633

[25] Lee S Y, Lu Y L, Liaw P K, Chen L J, Thompson S A, Blust J W, Browning P F, Bhattacharya A K,

Aurrecoechea J M, Klarstrom D L. J Mater Sci, 2009; 44: 2945
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[3] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[4] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[5] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[6] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[7] . The turning point in Paris region of fatigue crack growth in titanium alloy[J]. 金属学报, 2008, 44(8): 973-978 .
[8] XIONG Ying. A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH[J]. 金属学报, 2008, 44(11): 1348-1353 .
[9] YU Huichen; ZHANG Yanji; SUN Yanguo; XIE Shishu; TANAKA Keisuke. Near Threshold Fatigue Crack Growth Behavior in Stainless Steel[J]. 金属学报, 2005, 41(7): 721-726 .
[10] CHEN Wenzhe;ZHANG Sa;QIAN Kuangwu (Department of Materials; Fuzhou University; Fuzhou 350002)GU Haicheng (Institute of Materials; Xi'an Jiaotong University; Xi'an 710049)WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE CRACK GROWTH RATES AND FATIGUE THRESHOLDS OF CENTRIFUGAL SPRAY DEPOSITED Ti-48Al-2Mn-2Nb[J]. 金属学报, 1998, 34(1): 70-74.
[11] No Author. EFFECT OF OVERLOAD OCCURENCE FREQUENCY ON FATIGUE CRACK GROWTH RATE OF STEEL A537[J]. 金属学报, 1997, 33(6): 583-587.
[12] WEI Xuejun; LI Jin; KE Wei(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015); (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Manuscript received 1995-08-23). INFLUENCE OF SUPERPOSED SMALL LOADS ON FATIGUE CRACK PREPAGATION RATE OF A537 STEEL[J]. 金属学报, 1996, 32(5): 504-509.
[13] AI Suhua;GUAN Shaoxuan(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy; of Sciences; Shenyang 110015).FENG Zemin; GE Jingyan(Northeastern University; Shenyang 110006). EFFECT OF MICROSTRUCTURE ON FATIGUE CRACK GROWTH OF Ti_3Al-Nb ALLOYS[J]. 金属学报, 1995, 31(4): 183-190.
[14] LI Jianli; LI Xiaogang;XIE Genshuan; YAO Zhiming ; LI Jin; KE Wei(Corroston Science Laboratory; Instate of Corrosion and Protection of Metals; Chinese A cedemy of Sciences; Shenyang; 110015)(Manuscript received 94-07-22). FATIGUE PROPERTIES FOR 20G AND 2.25Cr-1Mo STEELS AFTER HYDROGEN ATTACK[J]. 金属学报, 1995, 31(13): 26-30.
[15] WANG Zhongguang;AI Suhua State Key Laboratory of Fatigue and Fracture for Materials; Institute of Metal Research; Academia Sinica; ShenyangZHENG Yessha;post-doctoral.Shanghai Institute of Coramics.Academia Sinica.Shnaghai 300050. ROUGHNESS-INDUCED SHEAR RESISTANCE OF MODE Ⅱ CRACK GROWTH[J]. 金属学报, 1993, 29(6): 13-21.
No Suggested Reading articles found!