Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (16): 188-19    DOI:
Current Issue | Archive | Adv Search |
DIFFUSION REACTION IN TA2/A3 EXPLOSIVE CLADDING INTERFACE
YANG Yang; ZHANG Xinming (Central South University of Technology; Changsha 410083). LI ZhenKhua; LI Qingyun (Northwest Research Institute for Nonferrous Metal; Baoji 721014)(Manuscript received 1994-06-27. in revised form 1994-10-10)
Cite this article: 

YANG Yang; ZHANG Xinming (Central South University of Technology; Changsha 410083). LI ZhenKhua; LI Qingyun (Northwest Research Institute for Nonferrous Metal; Baoji 721014)(Manuscript received 1994-06-27. in revised form 1994-10-10). DIFFUSION REACTION IN TA2/A3 EXPLOSIVE CLADDING INTERFACE. Acta Metall Sin, 1995, 31(16): 188-19.

Download:  PDF(465KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure togtether with the formation and growth of reaction phases in the interfacial diffusion zone of the explosive cladding. TA2/A3 has been investigated by means of OM. SEM, TEM, AES and XRD techniques. When the specimen is heat-treated at temperature under the β-Ti-α-Ti transformation. i.e., below 1173 K. only TiC forms along TA2 side of interface and hinders the interdiffuion of Fe and Tiatoins. thus Fe2Ti or FeTi is unable to occur. While it is treated up to the transformation temperature of β-Ti. e.g., over 1223 K, the parabolic growth of intermetallic compounds of Fe2Ti and FeTi with layer structure may form intergranularly and the formation of β-Ti or β-Ti + α-Ti structure at the Fe-enriched side of TA2 and of the martensitic transformation products at the Fe-depleted side were observed owing to diffusion of Fe. Furthermore, the growth of β-Ti transformation layer is revealed to follow the parabolic rule. (Correspondent:YANG Yang, Department of Materials Scince and Engineering, Cemral South University of Technology Changsha 410083)
Key words:  interface      diffusion reaction. microstructure      intermetallic compound     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I16/188

1杨扬,张新明,李青云,李正华,中国有色金属学报,1994:3(3):932XiaChangqing,JinZhanpeng.JLeess-CommonMetals,1990:162;3153颜学柏,李正华,彭文安.稀有金属材料工程,1990:5:384高文柱,顾亮.稀有金属材料与工程,1993:2:385王金文,葛志明,周彦邦.航空用钛合金,上海科学技术出版社,1985:666BarinI.KnackeO.ThermochemicalPropertiesofInorganicSubstances,Sprigner-Verlang.1973:116,275,749,7907BarinI,KnackeO,KubaschewskiO.ThermochemicalPropertiesofInorganicSubstances.Springer-Verlag,1977,Supplement:2578小沟裕一,村山顺一郎,大谷泰夫.铁钢,1988:74:18329桃野正.铁钢,1987:73:1590B
[1] WANG Furong, ZHANG Yongmei, BAI Guoning, GUO Qingwei, ZHAO Yuhong. First Principles Calculation of Al-Doped Mg/Mg2Sn Alloy Interface[J]. 金属学报, 2023, 59(6): 812-820.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] ZHOU Xiaobin, ZHAO Zhanshan, WANG Wanxing, XU Jianguo, YUE Qiang. Physical and Mathematical Simulation on the Bubble Entrainment Behavior at Slag-Metal Interface[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[8] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[9] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[10] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[11] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[12] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[13] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[14] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[15] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
No Suggested Reading articles found!