Please wait a minute...
Acta Metall Sin  2026, Vol. 62 Issue (1): 64-80    DOI: 10.11900/0412.1961.2025.00218
Overview Current Issue | Archive | Adv Search |
Research Progress on the Strength and Toughness of High-Strength Steel Weld Metal
CAO Rui1,2(), LIU Zishen1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

CAO Rui, LIU Zishen. Research Progress on the Strength and Toughness of High-Strength Steel Weld Metal. Acta Metall Sin, 2026, 62(1): 64-80.

Download:  HTML  PDF(4706KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, due to the rapid development of high-strength and high-toughness steels, the requirements for the strength and toughness of the steel and weld metal have increased. The development of welding materials, welding processes, and post-weld heat treatment systems compatible with high-strength, high-toughness steels remains a major challenge. To address the challenge of achieving both high-strength and high-toughness in high-strength steel weld metals, this paper systematically summarizes the research status of high-strength steel weld metals in composition design, phase transformation kinetics and behavior, and strengthening and toughening mechanisms. The summary is based on prior research on welding material composition optimization, welding process optimization, and post-weld heat treatment, combined with the work of our research group. Furthermore, the study reviews the key challenges and solutions related to the insufficient strength and toughness of current high-strength steel weld metals and summarizes the research directions and key points that must be considered in the future.

Key words:  high-strength steel      weld metal      strengthening and toughening      bainite transformation      alloying     
Received:  02 August 2025     
ZTFLH:  TG407  
Fund: National Natural Science Foundation of China(52175325);Central Leading Local Science and Technology Development Special Project(24ZYQA054);Top Leading Talents Project of Gansu Province, Key Research and Development Program of Gansu Province(23YFGA0057);Major Scientific and Technological Project of Gansu Province(24ZD13GA018);Major Scientific and Technological Project of Gansu Province(23ZDGA010);Major Scientific and Technological Project of Gansu Province(22ZD6GA008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2025.00218     OR     https://www.ams.org.cn/EN/Y2026/V62/I1/64

CEfAF / %fGB / %fBU / %fBL / %fLM / %
0.240-0.26520-45≈ 1020-30530-50
0.265-0.27510-201015-25550-65
0.272-0.2855-151010-20560-75
0.285-0.2955-12510-15570-85
0.293-0.30010510580-95
0.300005595-100
Table 1  Relationship between volume fraction of microstructure and carbon equivalent (CE) of high-strength steel weld metals[8]
Fig.1  Typical ductile-brittle transition curve (a), load-displacement curves (b-e), and fracture morphology (f)
(b-e) load-displacement curves and fracture morphology schematics (insets) at different ductile-brittle transition stages of upper shelf (b), transition regions (c, d), and lower shelf (e) (Orange lines in Figs.1c-e show the instan-taneous brittle cleavage fracture)
(f) fracture morphology showing the stretch zone width (SZW), stable-plastic crack length (SCL), and the cleavage fracture distance (Xf) from cleavage fracture initiation origins to the blunted crack tip
Fig.2  Effects of Ni content on microstructure, strength, and toughness of weld metal of high-strength steel[30,31,33] (Samples with Ni mass fractions of 0%, 2%, 4%, and 6% were designated as Ni0, Ni2, Ni4, and Ni6, respectively)
(a1-a8) in situ laser confocal observation results of bainite nucleation sites in samples Ni6[33] (1, 2, 3, 4—the first, second, third, and fourth growing bainitic laths)
(a9) Euler figure (EF) color map of the investigated grain for identifying various variants—the symbols and numbers indicate the variant numbers[33] (V1, V4, V6, V10, V11, V12, V14, V16, V20, V22, and V23—different variant types) (a10) plot of growing length against time (t) for three typical growth modes at various average rates[33] (b1-b5) microstructures (b1-b4) and fractions (b5) of weld metals in samples Ni0 (b1), Ni2 (b2), Ni4 (b3), and Ni6 (b4)[30] (DUB—degenerate upper bainite, PF—pro-eutectoid ferrite) (b6) prior austenite grain size distributions of weld metals with different Ni contents[30] (c1-c5) effects of Ni content on tensile strength[30] (c1), hardness[30] (c2-c4), and impact energy[31] (DBTT—ductile-brittle transition temperature) (c5) of weld metal
Specimenac / μmE / MPavσyd / MPaσf / MPaεpcTcQcγp / (N·m-1)
Ni0352000000.3118118540.00941.091.57174.33
Ni2292000000.3122919670.00200.921.60162.59
Ni4222000000.3133122600.00120.961.69162.82
Table 2  Fracture micro-parameters of high-strength steel weld metals with different Ni contents at -196 oC[31]
Fig.3  Effects of Si content on microstructure and mechanical properties of weld metals[42] (Samples with Si mass fractions of 0.3%, 1.2%, and 2.0% were designated as Si0.3, Si1.2, and Si2.0, respectively)
(a1-a3) microstructures of weld metals in samples Si0.3 (a1), Si1.2 (a2), and Si2.0 (a3) (BF—bainite ferrite, M—martensite)
(a4) grain sizes of weld metals with different Si contents
(b1) oxide initiation origin for Si2.0 specimen at -196 oC
(b2) local cleavage fracture stresses and the critical values of the stress intensification of specimens with different Si contents at -196 oC
(b3) relationship between impact energy (CVN) and SCL + SZW (c1-c3) effects of Si content on strength and hardness (c1), elongation and reduction rate of fracture area (c2), and impact energy (c3) of weld metal
Fig.4  Effects of Ti on inclusions in weld metal of high-strength steel[53] (I, II, III—the locations of selected area electron diffraction (SAED) analysis)
(a, b) STEM image and EDS mappings (a), bright-field TEM image and the SAED patterns (insets) (b) of inclusion in weld metal with low Ti content (c, d) STEM image and EDS mappings (c), bright-field TEM image and the SAED patterns (insets) (d) of inclusion in weld metal with high Ti content
Fig.5  Effects of B content on the microstructure, strength, and toughness of high-strength steel weld metals[65] (Samples with B mass fractions of 0.008%, 0.0020%, 0.0031%, 0.0042%, 0.0057%, and 0.0087% were designated as B08, B20, B31, B42, B57, and B87, respectively)
(a1-a4) positive ion distributions of carbon-containing and oxygen-containing composite anion of B87 (PAGB—prior austenite grain boundary. White arrows in Figs.5a2 and a4 indicate B-carbide and B-oxide, respectively)(b1-b6) microstructures (b1-b3) and EBSD images showing the high-angle grain boundary (b4-b6) of weld metals in samples B08 (b1, b4), B42 (b2, b5), and B87 (b3, b6) (M-A—martensite-austenite)
(b7) misorientation angle distributions of the weld metals with different B contents (RZ—reheated zone)
(b8) grain size distributions of weld metals with different B contents (c1-c3) mechanical properties of weld metals with different B contents (c1) ductile-brittle transition curve (c2) ductile-brittle transition temperature (c3) micro-hardness (CGZ—columnar grain zone)
Fig.6  Effects of pre-tempering on microstructure and impact toughness of high-strength steel weld metal[83]
(a1-a3) heat treatment process diagrams of tempered (types II and III) (a1, a2) and pre-tempered + tempered (type IV) (a3)
(b) impact energies of types I-IV weld metals (type I—as-welded) (c1-c4) microstructures of types I (c1), II (c2), III (c3), and IV (c4) weld metals
[1] Shin Y T, Kang S W, Lee H W. Fracture characteristics of TMCP and QT steel weldments with respect to crack length [J]. Mater. Sci. Eng., 2006, A434: 365
[2] Bhadeshia H K D H, Christian J W. Bainite in steels [J]. Metall. Trans., 1990, 21A: 767
[3] Girault E, Mertens A, Jacques P, et al. Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels [J]. Scr. Mater, 2001, 44: 885
[4] Wang J, Sun L Y, Ma H C, et al. Comparative study on mechanical and corrosion fatigue properties of high-strength bridge steels produced by TMCP and intercritical quenching tempering process [J]. Mater. Sci. Eng., 2022, A853: 143771
[5] Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
[6] Peng Y, Song L, Zhao L, et al. Research status of weldability of advanced steel [J]. Acta Metall. Sin., 2020, 56: 601
彭 云, 宋 亮, 赵 琳 等. 先进钢铁材料焊接性研究进展 [J]. 金属学报, 2020, 56: 601
[7] Li W T, Chai J, Liu G, et al. On the role of chemically heterogeneous austenite in cryogenic toughness of maraging steels manufactured via laser powder bed fusion [J]. Acta Mater., 2024, 276: 120157
[8] Bangaru N V, Fairchild D P, Macia M L, et al. Microstructural aspects of high-strength pipeline girth welds [A]. 4th International Conference on Pipeline Technology [C]. Ostend, Belgium, 2004
[9] Gong B M, Zhao C Y, Zhao H W, et al. Ductile-to-brittle transition behavior and determination method in X80 pipeline girth welds utilizing the master curve method [J]. Trans. China Weld. Inst., 2025, 46(7): 9
龚宝明, 赵辰妍, 赵海微 等. 基于主曲线法的X80管道环焊缝韧脆转变行为及确定方法 [J]. 焊接学报, 2025, 46(7): 9
[10] Chen J H, Cao R. Micromechanism of cleavage fracture of weld metals [J]. Acta Metall. Sin., 2017, 53: 1427
陈剑虹, 曹 睿. 焊缝金属解理断裂微观机理 [J]. 金属学报, 2017, 53: 1427
[11] Chen J H, Cao R. Micromechanism of Cleavage Fracture of Metals: A Comprehensive Microphysical Model for Cleavage Cracking in Metals [M]. Oxford, UK: Elsevier, Butterworth-Heinemann, 2015: 141
[12] Chen J H, Cao R. Micromechanism of Cleavage Fracture of Metals [M]. Beijing: Science Press, 2018: 165
陈剑虹, 曹 睿. 金属解理断裂微观机理 [M]. 北京: 科学出版社, 2018: 165
[13] Chen J H, Ma H, Wang G Z. Fracture behavior of C-Mn steel and weld metal in notched and precracked specimens: Part 1. Fracture behavior [J]. Metall. Trans., 1990, 21A: 313
[14] Chen J H, Wang G Z, Yan C, et al. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part II: Fracture model [J]. Inter. J. Fracture, 1997, 83: 121
[15] Chen J H, Wang G Z, Yan C, et al. Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part III: Local fracture stress σ [J]. Inter. J. Fracture, 1997, 83: 139
[16] Chen J H, Li G, Cao R, et al. Micromechanism of cleavage fracture at the lower shelf transition temperatures of a C-Mn steel [J]. Mater. Sci. Eng., 2010, A527: 5044
[17] Xu X L, Li W Q, Liu Z S, et al. Effects of interpass temperature and post-weld heat treatment cooling rate on impact toughness and corrosion resistance of P91 steel weld metal [J]. Mater. Mech. Eng., 2025, 49(3): 41
徐晓龙, 李文清, 刘梓申 等. 道间温度与焊后热处理冷却速率对P91钢焊缝金属冲击韧性与耐腐蚀性能的影响 [J]. 机械工程材料, 2025, 49(3): 41
[18] Li W Q, Ma J P, Cao R, et al. Effect of different degree of carbide aggregation in P91 steel weld metal on the impact toughness of weld metal [J]. Mater. Rep., 2024, 38: 23090208
李文清, 马景平, 曹 睿 等. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响 [J]. 材料导报, 2024, 38: 23090208
[19] Li W Q, Cao R, Yang F, et al. Analysis of factors affecting the impact toughness of P91 heat-resistant steel weld metal [J]. Mater. Rep., 2024, 38: 22080097
李文清, 曹 睿, 杨 飞 等. 影响P91耐热钢焊缝金属冲击韧性的因素分析 [J]. 材料导报, 2024, 38: 22080097
[20] Cao R, Yuan J J, Xiao Z G, et al. Sources of variability and lower values in toughness measurements of weld metals [J]. J. Mater. Eng. Perform., 2017, 26: 2472
[21] Yan Y J, Liu G, Cao R, et al. Sources of variability and improvement in impact toughness of a low Cr-Mo steel weld metal [J]. Int. J. Press. Vessels Pip., 2020, 187: 104175
[22] Jiao J J, Cao R, Li Y M, et al. Effect of post-welding heat treatment on impact toughness of Q690 high strength steel welded metal [J]. Mater. Rep., 2025, 39: 24010076
焦继军, 曹 睿, 李义民 等. 焊后热处理对Q690高强钢焊缝金属冲击韧性的影响 [J]. 材料导报, 2025, 39: 24010076
[23] Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 1025
李学达, 尚成嘉, 韩昌柴 等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J]. 金属学报, 2016, 52: 1025
[24] Hou X R, Zhao L, Ren S B, et al. Effect of heat input on microstructure and mechanical properties of marine high strength steel fabricated by wire arc additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 1311
侯旭儒, 赵 琳, 任淑彬 等. 热输入对电弧增材制造船用高强钢组织与力学性能的影响 [J]. 金属学报, 2023, 59: 1311
[25] Li X D, Li C Y, Cao N, et al. Crystallography of reverted austenite in the intercritically reheated coarse-grained heat-affected zone of high strength pipeline steel [J]. Acta Metall. Sin., 2021, 57: 967
李学达, 李春雨, 曹 宁 等. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学 [J]. 金属学报, 2021, 57: 967
[26] Cao R, Yang Z Q, Li J M, et al. Influence of fraction of coarse-grained heat affected zone on impact toughness for 09MnNiDR welded joint [J]. Trans. China Weld. Inst., 2020, 41(5): 7
曹 睿, 杨兆庆, 李金梅 等. 粗晶热影响区比例对09MnNiDR焊接接头冲击韧性的影响 [J]. 焊接学报, 2020, 41(5): 7
[27] Cao R, Yang Z Q, Chan Z S, et al. The determination of the weakest zone and the effects of the weakest zone on the impact toughness of the 12Cr2Mo1R welded joint [J]. J. Manuf. Processes, 2020, 50: 539
[28] Cao R, Li J, Liu D S, et al. Micromechanism of decrease of impact toughness in coarse-grain heat-affected zone of HSLA steel with increasing welding heat input [J]. Metall. Mater. Trans., 2015, 46A: 2999
[29] Jia Q, Guo W, Peng P, et al. Temperature field simulation and mechanical properties of laser welded DP980 steel joints [J]. Rare Met. Mater. Eng., 2017, 46: 1905
贾 强, 郭 伟, 彭 鹏 等. DP980激光焊接温度场模拟及力学性能 [J]. 稀有金属材料与工程, 2017, 46: 1905
[30] Mao G J, Cao R, Yang J, et al. Effect of nickel contents on the microstructure and mechanical properties for low-carbon bainitic weld metals [J]. J. Mater. Eng. Perform., 2017, 26: 2057
[31] Mao G J, Cao R, Cayron C, et al. Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints [J]. J. Mater. Processes Technol., 2018, 262: 638
[32] Mao G J, Cao R, Chen J H, et al. In-situ observation of microstructural evolution in reheated low carbon bainite weld metals with various Ni contents [J]. J. Iron Steel Res. Int., 2017, 24: 1206
[33] Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
[34] Mao G J, Cayron C, Cao R, et al. The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals [J]. Mater. Charact., 2018, 145: 516
[35] Liu J W, Sun J, Wei S T, et al. Influence of chromium content on the bainite transformation nucleation mechanism and the properties of 800 MPa grade low carbon bainite weld deposited metal [J]. Mater. Sci. Eng., 2022, A840: 142893
[36] Liu J W, Wei S T, Sun Q S, et al. Microstructure characteristics and mechanical properties of deposited metals with different types of bainite [J]. J. Mater Res. Technol., 2023, 23: 744
[37] Liu J W, Wei S T, Lu S P. Bainite nucleation mechanism and mechanical properties in low carbon bainite deposited metals with different nickel additions [J]. Mater. Sci. Eng., 2022, A857: 144036
[38] Wang Z Q, Wang X L, Nan Y R, et al. Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique [J]. Mater. Charact., 2018, 138: 67
[39] Bilmes P D, Solari M, Llorente C L. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals [J]. Mater. Charact., 2001, 46: 285
[40] Keehan E, Karlsson L, Andrén H O. Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1——Effect of nickel content [J]. Sci. Technol. Weld. Joining, 2016, 11: 9
[41] Liu Y, Sun J, Lu S P. Effect of Mo content on the microstructure and mechanical properties of 1000 MPa grade high-strength steel weld metal [J]. Acta Metall. Sin., doi: 10.11900/0412.1961.2024.00414
刘 洋, 孙 健, 陆善平. Mo含量对1000 MPa级高强钢焊缝金属组织和力学性能的影响 [J]. 金属学报, doi: 10.11900/0412.1961.2024.00414
[42] Cao R, Chan Z S, Yuan J J, et al. The effects of silicon and copper on microstructures, tensile and charpy properties of weld metals by refined X120 wire [J]. Mater. Sci. Eng., 2018, A718: 350
[43] Li F M, Hu B, Wang Q M, et al. Evolutions of microstructure and impact toughness of submerged arc weld metal via introducing varied Si for weathering bridge steel [J]. Metals, 2023, 13: 1506
[44] Lai W J, Ganguly S, Suder W. Study on effect of laser keyhole weld termination regimes and material composition on weld overlap start-stop defects [J]. J. Manuf. Processes, 2020, 58: 416
[45] Sun Q J, Tao Y J, Zhen Z Y, et al. Effects of Si element on the weld formation and microstructure of titanium/steel dissimilar joints [J]. Trans. China Weld. Inst., 2025, 46(1): 1
孙清洁, 陶玉洁, 甄祖阳 等. Si元素对钛/钢异种金属接头成形及微观组织影响 [J]. 焊接学报, 2025, 46(1): 1
[46] Agusa K, Kosho M, Nishiyama N. Effect of silicon and oxygen content on the toughness of ferritec weld metal in 9%Ni steel [J]. Q. J. Jpn. Weld. Soc., 1983, 1: 201
[47] Meng M D, Wei J S, An B T, et al. Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals [J]. Trans. China Weld. Inst., 2024, 45(4): 93
孟满丁, 魏金山, 安同邦 等. Si元素对800 MPa级HSLA钢焊材熔敷金属组织及韧性的影响 [J]. 焊接学报, 2024, 45(4): 93
[48] Stornelli G, Tselikova A, Mirabile Gattia D, et al. Influence of vanadium micro-alloying on the microstructure of structural high strength steels welded joints [J]. Materials, 2023, 16: 2897
[49] Malekinia M, Hamed Zargari H, Ito K, et al. Flux enhancement with titanium or vanadium oxides addition for superior submerged arc welding of HSLA steel plates [J]. J. Adv. Join. Processes, 2024, 10: 100238
[50] Hu B, Zhang Y B, Wu J W, et al. Mechanisms underlying the marked enhancement of toughness in the CGHAZ of N-Ti weathering steel subjected to large heat input through the trace addition of vanadium [J]. Mater. Sci. Eng., 2025, A925: 147910
[51] Haslberger P, Ernst W, Schneider C, et al. Influence of inhomogeneity on several length scales on the local mechanical properties in V-alloyed all-weld metal [J]. Weld. World, 2018, 62: 1153
[52] Cui K Y, Yang H F, Li Z R, et al. Effects of V-N microalloying on low-cycle fatigue property in the welded joints of constructional steel [J]. Materials, 2023, 16: 5860
[53] Han C Y, Li K J, Liu X, et al. Effect of Ti content and martensite-austenite constituents on microstructure and mechanical property [J]. Sci. Technol. Weld. Joining, 2018, 23: 410
[54] Xu K, Fang T, Zhao L F, et al. Effect of trace element on microstructure and fracture toughness of weld metal [J]. Acta Metall. Sin.(Engl. Lett.), 2020, 33: 425
[55] Li H Z, Wang D R, Wang W T, et al. Study on the impact toughness and crack propagation behavior of Ti microalloyed weathering steel laser-MAG hybrid welded joints [J]. Eng. Fail. Anal., 2025, 167: 109030
[56] Qi X N, Wang X N, Di H S, et al. Effect of Ti content on the inclusions, microstructure and fracture mechanism of X100 pipeline steel laser-MAG hybrid welds [J]. Mater. Sci. Eng., 2022, A831: 142207
[57] Paniagua-Mercado A M, Lopez-Hirata V M, Dorantes-Rosales H J, et al. Effect of TiO2-containing fluxes on the mechanical properties and microstructure in submerged-arc weld steels [J]. Mater. Charact., 2009, 60: 36
[58] Sampath K. Metallurgical design rules for high-strength steel weld metals [J]. Weld. J., 2022, 101: 123
[59] Levine E, Hill D C. Structure-property relationships in low C weld metal [J]. Metall. Trans., 1977, 8A: 1453
[60] Liu X, Shi Q Y, Xu M J, et al. Mechanisms of Ti and B on improving weld metal toughness of a Nb-alloyed steel [J]. Mater. Sci. Eng., 2020, A788: 139535
[61] Liu Z S, Cao R, Jiao S S, et al. Effect of Ti content on microstructure and mechanical properties of 960 MPa high strength steel weld metal [J]. J. Mech. Strength, 2025, 47(9): 182
刘梓申, 曹 睿, 焦世舜 等. Ti含量对960 MPa高强钢焊缝金属微观结构及力学性能的影响 [J]. 机械强度, 2025, 47(9): 182
[62] Li C N, Lou S Y, Di X J, et al. Effect of TiO2 in the self-shielded flux-cored wire on microstructures and properties of deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1171
利成宁, 楼嗣耀, 邸新杰 等. TiO2对自保护药芯焊丝熔敷金属组织与性能的影响 [J]. 天津大学学报(自然科学与工程技术版), 2023, 56: 1171
[63] Yuan H, Zhang Y Y, Wang C. Influence of MnO upon electrical conductive mechanisms of submerged arc welding fluxes: insights from ab initio molecular dynamics simulations [J]. Acta Metall. Sin., 2026, 62: 191
袁 航, 张燕云, 王 聪. 第一性原理分子动力学研究MnO对埋弧焊剂导电机制的影响 [J]. 金属学报, 2026, 62: 191
[64] Xie X, Wan Y B, Zhong M, et al. Optimizing microstructures and mechanical properties of electro-gas welded metals for EH36 shipbuilding steel treated by CaF2-TiO2 fluxes [J]. Acta Metall. Sin., 2025, 61: 998
谢 旭, 万一博, 钟 明 等. CaF2-TiO2焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控 [J]. 金属学报, 2025, 61: 998
[65] Cao R, Han C, Guo X L, et al. Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron [J]. Mater. Sci. Eng., 2022, A833: 142560
[66] A R, Zhao L, Pan C, et al. Effects of boron on toughness in high heat input welds of high strength low alloy steel [J]. J. Mech. Eng., 2014, 50(24): 100
阿 荣, 赵 琳, 潘 川 等. 硼对低合金高强钢大热输入焊缝韧性的影响 [J]. 机械工程学报, 2014, 50(24): 100
[67] Shin S S, Lee M, Kim K H. Role of minor addition of B in submerged arc weld metal for 500 MPa grade seismic steel plates [J]. J. Manuf. Processes, 2021, 68: 1418
[68] Cui Z H, Wang B X. Effect of boron treatment on the microstructure and toughness of Ti-containing steel weld metals [J]. Rev. Metal., 2022, 58: e223
[69] Hariprasath P, Sivaraj P, Balasubramanian V, et al. Effect of the welding technique on mechanical properties and metallurgical characteristics of the naval grade high strength low alloy steel joints produced by SMAW and GMAW [J]. CIRP J. Manuf. Sci. Technol., 2022, 37: 584
[70] Huan P C, Wang X N, Zhu T C, et al. Microstructure and mechanical properties of laser welded joint of 800 MPa grade hot-rolled high strength steel [J]. Chin. J. Lasers, 2019, 46: 0102002
环鹏程, 王晓南, 朱天才 等. 800 MPa级热轧高强钢激光焊接接头的组织和力学性能 [J]. 中国激光, 2019, 46: 0102002
[71] Chen C, Zhou H P, Wang C J, et al. Laser welding of ultra-high strength steel with different oscillating modes [J]. J. Manuf. Processes, 2021, 68: 761
[72] Lei Z, Cao H, Cui X F, et al. A novel high efficiency narrow-gap laser welding technology of 120 mm high-strength steel [J]. Opt. Lasers Eng., 2024, 178: 108232
[73] Wu M P, Luo Z, Ao S S. A novel welding method for extra-thick high-strength steel: Double-sided narrow gap oscillating laser and oscillating laser-TIG hybrid welding [J]. Opt. Lasers Technol., 2023, 164: 109432
[74] Ye Z, Chen G, Wang W L, et al. High-strength and high-toughness weld of S690QL HSLA steel via a high-speed high frequency electric cooperated arc welding without additional heating measures [J]. Mater. Sci. Eng., 2023, A880: 145328
[75] Meng W, Li Z G, Jiang X X, et al. Microstructure and toughness of simulated heat-affected zone of laser welded joint for 960 MPa grade high strength steel [J]. J. Mater. Eng. Perform., 2014, 23: 3640
[76] Chen L, Nie P L, Qu Z X, et al. Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800 MPa grade high-strength low-alloy steel [J]. J. Manuf. Processes, 2020, 50: 132
[77] Wang X L, Su W J, Xie Z J, et al. Microstructure evolution of heat-affected zone in submerged arc welding and laser hybrid welding of 690 MPa high strength steel and its relationship with ductile-brittle transition temperature [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 623
[78] Wang Y Q, Guo S, Duan R H, et al. Achievement of high strength and plasticity product of the nugget zone in friction stir welded high-Mn steel via controlling stacking fault energy [J]. Mater. Sci. Eng., 2023, A862: 144427
[79] Rajalingam P, Rajakumar S, Sonar T, et al. A comparative study on resistance spot and laser beam spot welding of ultra-high strength steel for automotive applications [J]. Int. J. Lightweight Mater. Manuf., 2024, 7: 648
[80] Tang C J, An T B, Peng Y, et al. Effect of heat input on microstructure and mechanical properties of weld metal of 690 MPa grade HSLA steel [J]. Trans. China Welding Inst., 2024, 45(9): 110
汤忖江, 安同邦, 彭 云 等. 焊接热输入对690 MPa级HSLA钢焊缝金属组织与力学性能的影响 [J]. 焊接学报, 2024, 45(9): 110
[81] Wang Z M, Zhuang J P, He Z Y, et al. Research advances in underwater welding technologies and applications: A review [J]. Acta Metall. Sin., 2026, 62: 81
王振民, 庄建鹏, 何智宇 等. 水下焊接关键技术及其应用的研究进展 [J]. 金属学报, 2026, 62: 81
[82] Wang A H, Wang J, Peng Y, et al. The effect of heat input on the micro-structure and impact toughness of weld metal for 690 MPa grade high strengthen steel [J]. J. Mater. Res. Technol., 2025, 37: 2905
[83] Li X Y, Jiang Y, Wu K F, et al. Effects of pre-tempering on the microstructure, hardness and impact toughness of the 2.25Cr-1Mo-0.25V heat-resistant steel weld metal [J]. Int. J. Press. Vessels Pip., 2021, 193: 104455
[84] Ba L Z, Li C N, Feng Z L, et al. Effects of alloying elements on the microstructure and properties of X80 pipeline steel deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1187
巴凌志, 利成宁, 冯兆龙 等. 合金元素对X80管线钢熔敷金属组织和性能的影响 [J]. 天津大学学报(自然科学与工程技术版), 2023, 56: 1187
[85] Jiang Z H, Wang P, Li D Z, et al. Influence of the decomposition behavior of retained austenite during tempering on the mechanical properties of 2.25Cr-1Mo-0.25 V steel [J]. Mater. Sci. Eng., 2019, A742: 540
[86] Zhang M, Wu W G, Chu Q L, et al. Development of 0Cr13Ni5Mo steel matching electrode used on fan impeller [J]. Trans. China Weld. Inst., 2013, 34(8): 1
张 敏, 吴伟刚, 褚巧玲 等. 风机叶轮用0Cr13Ni5Mo钢焊条的研制 [J]. 焊接学报, 2013, 34(8): 1
[87] Manugula V L, Rajulapati K V, Reddy G M, et al. Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states [J]. Mater. Sci. Eng., 2017, A698: 36
[88] Hu J, Jiang Z Z, Huang J H, et al. Effects of heat treatment processes on microstructure and impact toughness of weld metal of vacuum electron beam welding on CLAM steel [J]. Trans. China Weld. Inst., 2012, 33(11): 67
胡 杰, 姜志忠, 黄继华 等. 热处理工艺对CLAM钢电子束焊缝显微组织与冲击韧性的影响 [J]. 焊接学报, 2012, 33(11): 67
[89] Li W Q. P91 heat-resistant steel weld metal impact toughness stability analysis and regulation [D]. Lanzhou: Lanzhou University of Technology, 2023
李文清. P91耐热钢焊缝金属冲击韧性稳定性分析及调控 [D]. 兰州: 兰州理工大学, 2023
[90] Li J R, Zhang C L, Jiang B, et al. Effect of large-size M23C6-type carbides on the low-temperature toughness of martensitic heat-resistant steels [J]. J. Alloys Compd., 2016, 685: 248
[91] Ma J P, Cao R, Zhou X, et al. Effect of welding method and heat treatment on the fracture toughness of low alloy steel deposited metal [J]. Mater. Today Commun., 2024, 41: 110304
[1] LU Shanping, SUN Jian. Research Progress on Microstructural Design and Strengthening-Toughening Mechanisms of Weld Metal in High-Strength Steels[J]. 金属学报, 2026, 62(1): 1-16.
[2] ZHANG Linjie, ZHANG Xujing, NING Jie. Research Progress on the High-Temperature Creep Properties of Molybdenum Alloy Welded Joints[J]. 金属学报, 2026, 62(1): 47-63.
[3] WANG Dong, XU Lianyong, ZHAO Lei, HAN Yongdian, SONG Kai. Phase Field and Crystal Plasticity Simulation of Irradiation-Induced He Bubbles Evolution and Mechanical Behavior in 316H Steel and Weld Metal[J]. 金属学报, 2026, 62(1): 173-190.
[4] XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. 金属学报, 2025, 61(7): 998-1010.
[5] HAN Xiaodong, AN Zibing, MAO Shengcheng, LONG Haibo, YANG Luyan, ZHANG Ze. Negative Mixing Enthalpy Alloying to Promote the Development of Alloys with High Strength and Ductility[J]. 金属学报, 2025, 61(7): 953-960.
[6] LI Fushun, LIU Zhipeng, DING Cancan, HU Bin, LUO Haiwen. Strengthening and Plastifying Mechanisms of a Novel High-Strength Low-Density Austenitic Steel[J]. 金属学报, 2025, 61(6): 909-916.
[7] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[8] SUN Jun, LIU Gang, YANG Chong, ZHANG Peng, XUE Hang. Heat-Resistant Al Alloys: Microstructural Design and Preparation[J]. 金属学报, 2025, 61(4): 521-525.
[9] YANG Kang, XIN Yue, JIANG Zitao, LIU Xia, XUE Zhaolu, ZHANG Shihong. Mechanical Alloying Fabrication of Nano-ZrB2-Reinforced CoNiCrAlY Composite Powders and Microstructure-Property Characterization of the Resultant Coatings[J]. 金属学报, 2025, 61(4): 619-631.
[10] WANG Huiyuan, MENG Zhaoyuan, JIA Hailong, XU Xinyu, HUA Zhenming. Research Progress and Future Prospect on New Low-Alloyed Bake-Hardenable Magnesium Alloys[J]. 金属学报, 2025, 61(3): 372-382.
[11] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[12] ZHAO Jintao, SUN Lifang, HE Zhufeng, LIU Yujie, MA Xiaobai, SHEN Yongfeng, JIA Nan. Mechanical Behavior of Cryogenic Rolling Processed High Nitrogen Austenitic Stainless Steel with High Strength and Good Toughness[J]. 金属学报, 2025, 61(12): 1884-1894.
[13] HU Fusheng, WANG Zhihui, SONG Fengyu, WU Kaiming. See Water Corrosion Resistance Performance of Acicular Ferrite in a Low-Alloy High-Strength Steel Weld Metal[J]. 金属学报, 2025, 61(11): 1727-1737.
[14] ZHONG Yunbo, SHI Peijian. Hierarchical Lamellar Heterostructure Design Renders Metallic Materials with Ultrahigh Strength-Ductility Combinations[J]. 金属学报, 2025, 61(11): 1593-1602.
[15] WANG Jiajun, YUAN Ye, HE Zhufeng, ZHU Mingwei, JIA Nan. Microstructures and Mechanical Properties of the Fe50Mn29Co10Cr10Cu1 High-Entropy Alloy Regulated by Rolling Temperature[J]. 金属学报, 2025, 61(10): 1502-1514.
No Suggested Reading articles found!