Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (4): 572-582    DOI: 10.11900/0412.1961.2023.00086
Research paper Current Issue | Archive | Adv Search |
Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys
CAI Zhengqing1, YIN Dawei1, YANG Liang1, WANG Wenxiang1, WANG Feilong1,2, WEN Yongqing1,3, MA Mingzhen1()
1 State Key Laboratory of Metastable Materials Preparation Technology and Science, Yanshan University, Qinhuangdao 066004, China
2 Nanjing Iron and Steel Co. Ltd., Nanjing 210000, China
3 Baotou Rare Earth Research Institute, Baotou 014010, China
Cite this article: 

CAI Zhengqing, YIN Dawei, YANG Liang, WANG Wenxiang, WANG Feilong, WEN Yongqing, MA Mingzhen. Effect of Ag Substitution of Cu on Properties of Zr-Ti-Cu-Al Amorphous Alloys. Acta Metall Sin, 2025, 61(4): 572-582.

Download:  HTML  PDF(3890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bulk metallic glasses (BMGs) have unique microstructures that result in excellent physical and chemical properties. In this study, the impact of replacing Cu with Ag on the glass-forming ability (GFA), crystallization kinetics, mechanical properties, and corrosion resistance of the Zr55Ti3Cu32 - x Al10Ag x (x = 0, 1, 1.5, 2, and 2.5; atomic fraction, %) BMGs in the Zr-Ti-Cu-Al alloy system was examined, aiming to develop new Ni/Be-free BMGs for biomedical applications. XRD and DSC analyses demonstrate that replacing Cu with appropriate amounts of Ag improves the GFA of the alloy system and considerably increases the crystallization activation energy (Eg, Ex, Ep1, and Ep2), thereby enhancing thermal stability. From a thermodynamic perspective, Ag has a large negative heat of mixing with other elements. Furthermore, the addition of Ag enhances the interaction among components and promotes chemical short-range ordering in liquid, which can improve the local filling efficiency and inhibit the long-range diffusion of atoms, thereby improving the GFA. At the atomic level, Ag exhibits a considerable atomic radius disparity with the primary constituents, and its inclusion can generate a proficient and localized stacking configuration, thereby achieving reduced internal energy and augmented viscosity and enhancing the GFA of Zr55Ti3Cu32 - x Al10Ag x BMG. Mechanical property tests showed that the fracture strength increased with the increase of Ag content. In addition, the compressive deformation ability of Zr55Ti3Cu32 - xAl10Ag x BMGs is improved by the addition of appropriate Ag. The compressive strain of the new Zr55Ti3Cu30.5Al10Ag1.5 reaches 5.49%, which is 120% higher compared to the initial system. The addition of Ag may create local heterogeneity in the microstructure, allowing many secondary shear bands to appear during the expansion of the primary shear band, which increases the plasticity of the BMG. Electrochemical corrosion behavior analysis showed that the addition of appropriate Ag reduced the corrosion current density and increased the self-corrosion potential of Zr55Ti3Cu32 - x Al10Ag x BMG. Moreover, Ag enhanced the biocorrosion resistance of Zr55Ti3Cu32 - x Al10Ag x BMG in simulated body fluid and phosphate-buffered saline. Therefore, the new Zr-Ti-Cu-Al-Ag BMG system has shown great application potential as a biomedical material.

Key words:  bulk metallic glass      glass forming ability      crystallization kinetics      mechanical property      biocorrosion resistance     
Received:  02 March 2023     
ZTFLH:  TG139+.8  
Fund: National Natural Science Foundation of China(52071278, 51827801);National Key Research and Development Program of China(2018YFA0703603)
Corresponding Authors:  MA Mingzhen, professor, Tel: (022)8071730, E-mail: mz550509@ysu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00086     OR     https://www.ams.org.cn/EN/Y2025/V61/I4/572

Fig.1  XRD spectra of as-cast Zr55Ti3Cu32 - x Al10Ag x bulk metallic glasses (BMGs) with their critical diameters (Dc)
Fig.2  DSC curves of Zr55Ti3Cu32 - x Al10Ag x BMGs at 20 K/min (Tg—glass transition temperature, Tx—crystallization temperature, Tm—melting temperature, Tl—liquidus temperature)
xTgTxTmTlTrgDc
KKKKmm
0673.0730.41133.81165.40.5774
1667.2729.71130.91164.30.5733
1.5673.8727.21127.61164.20.5796
2665.1726.41124.91161.10.5735
2.5665.0726.31123.41161.00.5735
Table 1  Thermal properties and Dcof the Zr55Ti3Cu32 - x Al10-Ag x BMGs
Fig.3  DSC curves of Zr55Ti3Cu32 - x Al10Ag x BMGs at different heating rates (Tp1, Tp2—the first and second crystallization peak temperatures, respectively)
(a) x = 0 (b) x = 1 (c) x = 1.5 (d) x = 2 (e) x = 2.5
xβ / (K·min-1)Tg / KTx / KTp1 / KTp2 / K
010665.2721.9724.2854.3
20673.0730.4732.9872.4
30674.7736.6739.3886.6
40681.7740.1742.9895.5
110665.2720.7723.1868.6
20667.2729.7731.5890.1
30676.3734.6736.9900.8
40680.5738.3741.0909.9
1.510661.3718721.3879.4
20673.8727.2729.9899.9
30674.0733.3735.8911.8
40674.6735.4738.6918.2
210662.2718721.2886.1
20665.1726.4729.8904.5
30673.7732.1735.2914.3
40674.5736.5739.8923.2
2.510663.1718.2721.7888.8
20665.0727.1730.0904.9
30671.5731.8735.4915.0
40672.0735.9738.8921.8
Table 2  Characteristic temperatures of Zr55Ti3Cu32 - x Al10-Ag x BMGsat different heating rates (β)
Fig.4  Kissinger maps of Zr55Ti3Cu32 - x Al10Ag x BMGs (The fits have goodness of fit R2 > 0.95; Ta—characteristic temperature, R—gas constant, Eg—glass transition activation energy, Ex—crystallization nucleation activation energy, Ep1—activa-tion energy for primary crystal growth, Ep2—activation energy for secondary crystal growth)
(a) x = 0 (b) x = 1 (c) x = 1.5 (d) x = 2 (e) x =2.5
Fig.5  Compressive stress-strain curves of Zr55Ti3Cu32 - x-Al10Ag x BMGs under uniaxial compression with a diameter of 3 mm at room temperature
xσy / MPaσf / MPaεmax / %εp / %E / GPa
0-14952.49-67.0
1-15333.00-61.9
1.5154116595.491.9454.2
2161717844.201.4069.6
2.5168517183.290.2469.8
Table 3  Mechanical properties of the Zr55Ti3Cu32 - x Al10Ag x BMGs
Fig.6  SEM images of fracture morphologies for the Zr55Ti3Cu32 - x Al10Ag x BMG compression samples
(a) x = 0 (b) x = 1 (c) x = 1.5 (d) x = 2 (e) x = 2.5
Fig.7  SEM images of the lateral surfaces of Zr55Ti3Cu32 - x Al10Ag x BMG compression samples
(a) x = 0 (b) x = 1 (c) x = 1.5 (d) x = 2 (e) x = 2.5
Fig.8  Potentiodynamic polarization curves of Zr55Ti3Cu32 - x Al10Ag x BMG in two kinds of solution (i—current density, E—potential, SCE—saturated calomel electrode)
(a) phosphate buffer saline (PBS) (b) simulated body fluid (SBF)
Solutionxicorr / (A·cm-2)Ecorr / mVEpit / mV
PBS05.10 × 10-7-427.9-36.2
1.51.04 × 10-7-426.7-296.7
22.12 × 10-7-582.1-212.7
2.52.15 × 10-7-463.9-275.6
SBF05.56 × 10-8-311.7-100.9
1.53.68 × 10-8-346.5-175.3
21.03 × 10-8-278.8-203.2
2.52.02 × 10-8-381.7-102.7
Table 4  Corrosion potential (Ecorr), corrosion current density (icorr), and pitting potential (Epit) of Zr55Ti3Cu32 - x Al10Ag x BMGs
Fig.9  SEM images of Zr55Ti3Cu32 - x Al10Ag x BMG corroded surfaces in two kinds of solutions
(a) x = 0, PBS (b) x = 1.5, PBS (c) x = 0, SBF (d) x = 2, SBF
1 El-Eskandarany M S, Ali N, Saeed M. Glass-forming ability and soft magnetic properties of (Co75Ti25)100 - x Fe x (x; 0-20 at.%) systems fabricated by SPS of mechanically alloyed nanopowders [J]. Nanomaterials, 2020, 10: 849
2 Zhang C, Li N, Pan J, et al. Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag [J]. J. Alloys Compd., 2010, 504: S163
3 Chang C T, Shen B L, Inoue A. FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties [J]. Appl. Phys. Lett., 2006, 89: 051912
4 Schroers J. Processing of bulk metallic glass [J]. Adv. Mater., 2010, 22: 1566
5 Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys [J]. Acta Mater., 2011, 59: 2243
6 Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
7 Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method [J]. Mater. Trans. JIM, 1996, 37: 185
8 Inoue A, Gook J S. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region [J]. Mater. Trans. JIM, 1995, 36: 1180
9 Inoue A, Shinohara Y, Gook J S. Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting [J]. Mater. Trans. JIM, 1995, 36: 1427
10 Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter [J]. Mater. Trans. JIM, 2007, 38: 179
11 He Y, Schwarz R B, Archuleta J I. Bulk glass formation in the Pd-Ni-P system [J]. Appl. Phys. Lett., 1996, 69: 1861
12 Shen Y, Ma E, Xu J. A group of Cu(Zr)-based BMGs with critical diameter in the range of 12 to 18 mm [J]. J. Mater. Sci. Technol., 2008, 24: 149
13 Zhang Q S, Zhang W, Inoue A. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm [J]. Scr. Mater., 2006, 55: 711
14 Inoue A, Ohtera K, Kita K, et al. New amorphous Mg-Ce-Ni alloys with high strength and good ductility [J]. Jpn. J. Appl. Phys., 1988, 27: L2248
15 Inoue A, Nishiyama N, Amiya K, et al. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater. Trans. JIM, 1989, 30: 965
16 Shi H Q, Zhao W B, Wei X W, et al. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications [J]. J. Alloys Compd., 2020, 815: 152636
17 Hua N B, Li R, Wang H, et al. Formation and mechanical properties of Ni-free Zr-based bulk metallic glasses [J]. J. Alloys Compd., 2011, 509(): S175
18 Wataha J C, Lockwood P E, Schedle A. Effect of silver, copper, mercury, and nickel ions on cellular proliferation during extended, low‐dose exposures [J]. J. Biomed. Mater. Res., 2000, 52: 360
19 Jin Z S, Yang Y J, Zhang Z P, et al. Effect of Hf substitution Cu on glass-forming ability, mechanical properties and corrosion resistance of Ni-free Zr-Ti-Cu-Al bulk metallic glasses [J]. J. Alloys Compd., 2019, 806: 668
20 Zhang W, Jia F, Zhang Q S, et al. Effects of additional Ag on the thermal stability and glass-forming ability of Cu-Zr binary glassy alloys [J]. Mater. Sci. Eng., 2007, 459A: 330
21 Hua N B, Pang S J, Li Y, et al. Ni- and Cu-free Zr-Al-Co-Ag bulk metallic glasses with superior glass-forming ability [J]. J. Mater. Res., 2011, 26: 539
22 Saini S, Srivastava A P, Neogy S. The effect of Ag addition on the crystallization kinetics and glass forming ability of Zr-(CuAg)-Al bulk metallic glass [J]. J. Alloys Compd., 2019, 772: 961
23 Hua N B, Zhang T. Glass-forming ability, crystallization kinetics, mechanical property, and corrosion behavior of Zr-Al-Ni-Ag glassy alloys [J]. J. Alloys Compd., 2014, 602: 339
24 Yang Y J, Cheng B Y, Lv J W, et al. Effect of Ag substitution for Ti on glass-forming ability, thermal stability and mechanical properties of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 2019, A746: 229
25 Wan Y Z, Raman S, He F, et al. Surface modification of medical metals by ion implantation of silver and copper [J]. Vacuum, 2007, 81: 1114
26 Lu Z P, Bei H, Liu C T. Recent progress in quantifying glass-forming ability of bulk metallic glasses [J]. Intermetallics, 2007, 15: 618
27 Turnbull D. Kinetics of solidification of supercooled liquid mercury droplets [J]. J. Chem. Phys., 1952, 20: 411
28 Sohrabi S, Gholamipour R. Effect of Nb minor addition on the crystallization kinetics of Zr-Cu-Al-Ni metallic glass [J]. J. Non-Cryst. Solids, 2021, 560: 120731
29 Qiao J C, Pelletier J M. Isochronal and isothermal crystallization in Zr55Cu30Ni5Al10 bulk metallic glass [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 577
30 Chen Q Z, Thouas G A. Metallic implant biomaterials [J]. Mater. Sci. Eng., 2015, R87: 1
31 Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
32 Conner R D, Choi-Yim H, Johnson W. Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites [J]. J. Mater. Res., 1999, 14: 3292
33 Kusy M, Kühn U, Concustell A, et al. Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass [J]. Intermetallics, 2006, 14: 982
34 Xi X K, Zhao D Q, Pan M X, et al. Fracture of brittle metallic glasses: Brittleness or plasticity [J]. Phys. Rev. Lett., 2005, 94: 125510
35 Zhang Y, Zhou M, Zhao X Y, et al. Co substituted Zr-Cu-Al-Ni metallic glasses with enhanced glass-forming ability and high plasticity [J]. J. Non-Cryst. Solids, 2017, 473: 120
36 Wang W H, Wei Q, Friedrich S. Microstructure, decomposition, and crystallization in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass [J]. Phys. Rev., 1998, 57B: 8211
37 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
38 Zhang Q S, Zhang W, Louzguine-Luzgin D V, et al. High glass-forming ability and unusual deformation behavior of new Zr-Cu-Fe-Al bulk metallic glasses [J]. Mater. Sci. Forum, 2010, 654-656: 1042
39 Cui X, Zu F Q, Jiang W X, et al. Achieving superior glass forming ability of Zr-Cu-Al-Ni-Ti/Ag bulk metallic glasses by element substitution [J]. J. Non-Cryst. Solids, 2013, 375: 83
40 Trexler M M, Thadhani N N. Mechanical properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2010, 55: 759
41 Hua N B, Huang L, He W, et al. A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility [J]. J. Non-Cryst. Solids, 2013, 376: 133
42 Park E S, Lee J Y, Kim D H. Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg-Cu-Gd bulk metallic glass [J]. J. Mater. Res., 2005, 20: 2379
43 Li B, Sun W C, Qi H N, et al. Effects of Ag substitution for Fe on glass-forming ability, crystallization kinetics, and mechanical properties of Ni-free Zr-Cu-Al-Fe bulk metallic glasses [J]. J. Alloys Compd., 2020, 827: 154385
44 Sun Y, Huang Y J, Fan H B, et al. In vitro and in vivo biocompatibility of an Ag-bearing Zr-based bulk metallic glass for potential medical use [J]. J. Non-Cryst. Solids, 2015, 419: 82
45 Hua N B, Huang L, Wang J F, et al. Corrosion behavior and in vitro biocompatibility of Zr-Al-Co-Ag bulk metallic glasses: An experimental case study [J]. J. Non-Cryst. Solids, 2012, 358: 1599
46 Li W R, Xie X B, Shi Q S, et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli [J]. Appl. Microbiol. Biotechnol., 2010, 85: 1115
[1] YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying. Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. 金属学报, 2025, 61(4): 561-571.
[2] SUN Jun, LIU Gang, YANG Chong, ZHANG Peng, XUE Hang. Heat-Resistant Al Alloys: Microstructural Design and Preparation[J]. 金属学报, 2025, 61(4): 521-525.
[3] OUYANG Sihui, SHE Jia, CHEN Xianhua, PAN Fusheng. Preparation of Biodegradable Mg-Based Composites and Their Recent Advances in Orthopedic Applications[J]. 金属学报, 2025, 61(3): 455-474.
[4] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[5] PANG Mengyao, WU Ruizhi, MA Xiaochun, JIN Siyuan, YU Zhe, Boris Krit. Effect of Hot Rolling Process on Mechanical Property and Corrosion Behavior of Rapidly Degrading Mg-Li Alloy[J]. 金属学报, 2025, 61(3): 509-520.
[6] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[7] ZHAO Yanan, GUO Qianying, LIU Chenxi, MA Zongqing, LIU Yongchang. Effects of Subsequent Heat Treatment on Microstructure and High-Temperature Mechanical Properties of Laser 3D Printed GH4099 Alloy[J]. 金属学报, 2025, 61(1): 165-176.
[8] ZHU Man, ZHANG Cheng, XU Junfeng, JIAN Zengyun, XI Zengzhe. Microstructure, Mechanical Properties, and High-Temperature Oxidation Behaviors of the CrNbTiVAl x Refractory High-Entropy Alloys[J]. 金属学报, 2025, 61(1): 88-98.
[9] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[10] ZHANG Shengyu, MA Qingshuang, YU Liming, ZHANG Jingwen, LI Huijun, GAO Qiuzhi. Effect of Pre-Aging on Microstructure and Properties of Cold-Rolled Alumina-Forming Austenitic Steel[J]. 金属学报, 2025, 61(1): 177-190.
[11] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
[12] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[13] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[14] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[15] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
No Suggested Reading articles found!