|
|
Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels |
ZHANG Chao1, XIONG Zhiping1,2( ), YANG Dezhen1, CHENG Xingwang1,2 |
1 National Key Laboratory of Science and Technology on Materials under Shock and Impact, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China 2 Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, China |
|
Cite this article:
ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels. Acta Metall Sin, 2024, 60(1): 69-79.
|
Abstract The ever increasing demand for safe and lightweight steel has promoted the development of advanced high-strength steel (AHSS). Recently, many AHSSs have been developed through chemical heterogeneity, resulting in microstructure refinement and mechanical property optimization. Although many efforts emphasize the construction of Mn-heterogeneous high-temperature austenite (γ-Fe), the influence of Mn-heterogeneous distribution remains unclear. In this work, different austenitization times and temperatures are applied to Mn-partitioned pearlite, followed by the same quenching and partitioning process. The effect of Mn distribution in high-temperature austenite on the microstructural evolution and mechanical properties is systematically investigated. Results show that the Mn-heterogeneous high-temperature austenite can tailor the austenite-to-martensite transformation during quenching. The Mn-depleted austenite is then readily transformed into lath martensite, and the Mn-enriched austenite is mainly retained as film roughness (RA), both of which assemble the ghost pearlite. With an increase in austenitization time and temperature, the Mn atom diffusion from the Mn-enriched austenite (originated from cementite lamellae) to the Mn-depleted one (originated from ferrite lamellae) increases, leading to the decreased chemical heterogeneity in high-temperature austenite. Thus, the fraction of ghost pearlite decreases while the fraction and size of blocky RA and coarse lath martensite increase. A wider lath martensite lowers the strength of the yield or the elastic limit of steel. The increased fraction and size of blocky RA ensure an increased uniform elongation by transformation-induced plasticity effect, whereas the transformation product (i.e., fresh martensite) is detrimental to the post-uniform elongation. Meanwhile, because the fractions of RA and martensite hardly change with austenitization condition, the ultimate tensile strength (about 1700 MPa) and total elongation (about 20%) are relatively constant. Therefore, tuning the Mn distribution in high-temperature austenite provides an effective strategy to tailor yield strength and uniform elongation while maintaining large ultimate tensile strength and total elongation.
|
Received: 24 June 2022
|
|
Fund: National Natural Science Foundation of China(52271004);National Natural Science Foundation of China(51901021);Science and Technology Innovation Project of Beijing Institute of Technology(2019CX01019) |
Corresponding Authors:
XIONG Zhiping, associate professor, Tel: (010)68912490, E-mail: zpxiong@bit.edu.cn
|
1 |
Xiong Z P, Saleh A A, Marceau R K W, et al. Site-specific atomic-scale characterisation of retained austenite in a strip cast TRIP steel [J]. Acta Mater., 2017, 134: 1
doi: 10.1016/j.actamat.2017.05.060
|
2 |
Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel [J]. Scr. Mater., 2013, 68: 321
doi: 10.1016/j.scriptamat.2012.11.003
|
3 |
Xu W, Huang M H, Wang J L, et al. Review: Relations between metastable austenite and fatigue behavior of steels [J]. Acta Metall. Sin., 2020, 56: 459
doi: 10.11900/0412.1961.2019.00399
|
|
徐 伟, 黄明浩, 王金亮 等. 综述: 钢中亚稳奥氏体组织与疲劳性能关系 [J]. 金属学报, 2020, 56: 459
|
4 |
Liu M, Hu H J, Tian J Y, et al. Effect of ausforming on the microstructures and mechanical properties of an ultra-high strength bainitic steel [J]. Acta Metall. Sin., 2021, 57: 749
doi: 10.11900/0412.1961.2020.00310
|
|
刘 曼, 胡海江, 田俊羽 等. 变形对超高强贝氏体钢组织和力学性能的影响 [J]. 金属学报, 2021, 57: 749
|
5 |
Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
doi: 10.1016/S1359-6454(03)00059-4
|
6 |
Caballero F G, Bhadeshia H K D H. Very strong bainite [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 251
doi: 10.1016/j.cossms.2004.09.005
|
7 |
Luo H W, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel [J]. Acta Mater., 2011, 59: 4002
doi: 10.1016/j.actamat.2011.03.025
|
8 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
9 |
Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite [J]. Scr. Mater., 2018, 146: 60
doi: 10.1016/j.scriptamat.2017.11.007
|
10 |
Kim J H, Gu G, Kwon M H, et al. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite [J]. Acta Mater., 2022, 223: 117506
doi: 10.1016/j.actamat.2021.117506
|
11 |
Zhang C, Xiong Z P, Yang D Z, et al. Heterogeneous quenching and partitioning from manganese-partitioned pearlite: Retained austenite modification and formability improvement [J]. Acta Mater., 2022, 235: 118060
doi: 10.1016/j.actamat.2022.118060
|
12 |
Yang D Z, Xiong Z P, Zhang C, et al. Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel [J]. J. Iron Steel Res., 2021, 33: 1161
|
|
杨德振, 熊志平, 张 超 等. 回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响 [J]. 钢铁研究学报, 2021, 33: 1161
|
13 |
Cunningham J L, Medlin D J, Krauss G. Effects of induction hardening and prior cold work on a microalloyed medium carbon steel [J]. J. Mater. Eng. Perform., 1999, 8: 401
doi: 10.1361/105994999770346684
|
14 |
Yang D Z, Xiong Z P, Zhang C, et al. Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel [J]. J. Iron Steel Res. Int., 2022, 29: 1393
doi: 10.1007/s42243-021-00677-0
|
15 |
Santofimia M J, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
doi: 10.1016/j.actamat.2011.06.014
|
16 |
Wang C Y, Shi J, Cao W Q, et al. Study on the martensite in low carbon CrNi3Si2MoV steel treated by Q&P process [J]. Acta Metall. Sin., 2011, 47: 718
|
|
王存宇, 时 捷, 曹文全 等. Q&P工艺处理低碳CrNi3Si2MoV钢中马氏体的研究 [J]. 金属学报, 2011, 47: 718
|
17 |
Gao P F, Liang J H, Chen W J, et al. Prediction and evaluation of optimum quenching temperature and microstructure in a 1300 MPa ultra-high-strength Q&P steel [J]. J. Iron Steel Res. Int., 2022, 29: 307
doi: 10.1007/s42243-020-00535-5
|
18 |
Xiong Z P, Jacques P J, Perlade A, et al. Characterization and control of the compromise between tensile properties and fracture toughness in a quenched and partitioned steel [J]. Metall. Mater. Trans., 2019, 50A: 3502
|
19 |
Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63: 815
doi: 10.1016/j.scriptamat.2010.06.023
|
20 |
Xu Y T, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides [J]. Acta Mater., 2021, 214: 116986
doi: 10.1016/j.actamat.2021.116986
|
21 |
Yang Z N, Enomoto M, Zhang C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel [J]. Philos. Mag. Lett., 2016, 96: 256
doi: 10.1080/09500839.2016.1197432
|
22 |
Li S, Yang Z N, Enomoto M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy [J]. Acta Mater., 2019, 177: 198
doi: 10.1016/j.actamat.2019.07.038
|
23 |
Divinski S V, Hisker F, Kang Y S, et al. Tracer diffusion of 63Ni in nano-γ-FeNi produced by powder metallurgical method: Systematic investigations in the C, B, and A diffusion regimes [J]. Interface Sci., 2003, 11: 67
doi: 10.1023/A:1021587007368
|
24 |
Guo Q, Yen H W, Luo H, et al. On the mechanism of Mn partitioning during intercritical annealing in medium Mn steels [J]. Acta Mater., 2022, 225: 117601
doi: 10.1016/j.actamat.2021.117601
|
25 |
Li Z D, Yang Z G, Zhang C, et al. Influence of austenite deformation on ferrite growth in a Fe-C-Mn alloy [J]. Mater. Sci. Eng., 2010, A527: 4406
|
26 |
Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite [J]. Scr. Mater., 2018, 150: 1
doi: 10.1016/j.scriptamat.2018.02.035
|
27 |
Cech R E, Turnbull D. Heterogeneous nucleation of the martensite transformation [J]. JOM, 1956, 8: 124
doi: 10.1007/BF03377656
|
28 |
Jing S Y, Ding H, Ren Y P, et al. A new insight into annealing parameters in tailoring the mechanical properties of a medium Mn steel [J]. Scr. Mater., 2021, 202: 114019
doi: 10.1016/j.scriptamat.2021.114019
|
29 |
Gao G H, Gao B, Gui X L, et al. Correlation between microstructure and yield strength of as-quenched and Q&P steels with different carbon content (0.06-0.42 wt% C) [J]. Mater. Sci. Eng., 2019, A753: 1
|
30 |
HajyAkbary F, Sietsma J, Miyamoto G, et al. Analysis of the mechanical behavior of a 0.3C-1.6Si-3.5Mn (wt%) quenching and partitioning steel [J]. Mater. Sci. Eng., 2016, A677: 505
|
31 |
Bouquerel J, Verbeken K, De Cooman B C. Microstructure-based model for the static mechanical behaviour of multiphase steels [J]. Acta Mater., 2006, 54: 1443
doi: 10.1016/j.actamat.2005.10.059
|
32 |
McGuire M F. Stainless Steels for Design Engineers [M]. Materials Park: ASM International, 2008: 74
|
33 |
Irvine J, Baker T N. The influence of rolling variables on the strengthening mechanisms operating in niobium steels [J]. Mater. Sci. Eng., 1984, 64: 123
|
34 |
Krauss G. Martensite in steel: Strength and structure [J]. Mater. Sci. Eng., 1999, A273-275: 40
|
35 |
Rodriguez RM, Gutiérrez I. Unified formulation to predict the tensile curves of steels with different microstructures [J]. Mater. Sci. Forum, 2003, 426-432: 4525
doi: 10.4028/www.scientific.net/MSF.426-432
|
36 |
Xiong Z P, Timokhina I, Pereloma E. Clustering, nano-scale precipitation and strengthening of steels [J]. Prog. Mater. Sci., 2021, 118: 100764
doi: 10.1016/j.pmatsci.2020.100764
|
37 |
Smith D W, Hehemann R F. Influence of structural parameters on the yield strength of tempered martensite and lower bainite [J]. J. Iron Steel Inst., 1971, 209: 476
|
38 |
Taylor G I. The mechanism of plastic deformation of crystals. Part I.—Theoretical [J]. Proc. R. Soc, 1934, 145A: 362
|
39 |
Girault E, Jacques P, Harlet P, et al. Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels [J]. Mater. Charact., 1998, 40: 111
doi: 10.1016/S1044-5803(97)00154-X
|
40 |
Xiong Z P, Jacques P J, Perlade A, et al. Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel [J]. Scr. Mater., 2018, 157: 6
doi: 10.1016/j.scriptamat.2018.07.030
|
41 |
Wang Y, Zhang K, Guo Z H, et al. A new effect of retained austenite on ductility enhancement of low carbon Q-P-T steel [J]. Acta Metall. Sin., 2012, 48: 641
doi: 10.3724/SP.J.1037.2012.00042
|
|
王 颖, 张 柯, 郭正洪 等. 残余奥氏体增强低碳Q-P-T钢塑性的新效应 [J]. 金属学报, 2012, 48: 641
|
42 |
Martelo D F, Mateo A, Chapetti M D. Crack closure and fatigue crack growth near threshold of a metastable austenitic stainless steel [J]. Int. J. Fatigue, 2015, 77: 64
doi: 10.1016/j.ijfatigue.2015.02.016
|
43 |
Mei Z, Morris J W. Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels [J]. Metall. Trans., 1990, 21A: 3137
|
44 |
Niendorf T, Rubitschek F, Maier H J, et al. Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 2412
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|